25 research outputs found

    Comparison of Electron-Atom Collision Parameters for S to P Transitions under Reversal of Energy Transfer

    Get PDF
    Inelastic and superelastic electron scattering from the optically prepared 32P3/2 state of sodium has enabled atomic collision parameters to be deduced for the 4S-3P deexcitation and the 3S-3P excitation processes. These data are compared with convergent close coupling and second order distorted wave Born calculations. For excitation, both theories agree with experiment, whereas for deexcitation the close coupling theory is in better agreement. A long-standing proposal relating to the sign of the transferred angular momentum is not supported

    Comparison of Electron-Atom Collision Parameters for S to P Transitions under Reversal of Energy Transfer

    Get PDF
    Inelastic and superelastic electron scattering from the optically prepared 32P3/2 state of sodium has enabled atomic collision parameters to be deduced for the 4S-3P deexcitation and the 3S-3P excitation processes. These data are compared with convergent close coupling and second order distorted wave Born calculations. For excitation, both theories agree with experiment, whereas for deexcitation the close coupling theory is in better agreement. A long-standing proposal relating to the sign of the transferred angular momentum is not supported

    A Single Peroxisomal Targeting Signal Mediates Matrix Protein Import in Diatoms

    Get PDF
    Peroxisomes are single membrane bound compartments. They are thought to be present in almost all eukaryotic cells, although the bulk of our knowledge about peroxisomes has been generated from only a handful of model organisms. Peroxisomal matrix proteins are synthesized cytosolically and posttranslationally imported into the peroxisomal matrix. The import is generally thought to be mediated by two different targeting signals. These are respectively recognized by the two import receptor proteins Pex5 and Pex7, which facilitate transport across the peroxisomal membrane. Here, we show the first in vivo localization studies of peroxisomes in a representative organism of the ecologically relevant group of diatoms using fluorescence and transmission electron microscopy. By expression of various homologous and heterologous fusion proteins we demonstrate that targeting of Phaeodactylum tricornutum peroxisomal matrix proteins is mediated only by PTS1 targeting signals, also for proteins that are in other systems imported via a PTS2 mode of action. Additional in silico analyses suggest this surprising finding may also apply to further diatoms. Our data suggest that loss of the PTS2 peroxisomal import signal is not reserved to Caenorhabditis elegans as a single exception, but has also occurred in evolutionary divergent organisms. Obviously, targeting switching from PTS2 to PTS1 across different major eukaryotic groups might have occurred for different reasons. Thus, our findings question the widespread assumption that import of peroxisomal matrix proteins is generally mediated by two different targeting signals. Our results implicate that there apparently must have been an event causing the loss of one targeting signal even in the group of diatoms. Different possibilities are discussed that indicate multiple reasons for the detected targeting switching from PTS2 to PTS1

    Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation

    Get PDF
    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m-2 (27%) to -0.60 W m-2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes

    Time-Resolved Transcriptome Analysis of Bacillus subtilis Responding to Valine, Glutamate, and Glutamine

    Get PDF
    Microorganisms can restructure their transcriptional output to adapt to environmental conditions by sensing endogenous metabolite pools. In this paper, an Agilent customized microarray representing 4,106 genes was used to study temporal transcript profiles of Bacillus subtilis in response to valine, glutamate and glutamine pulses over 24 h. A total of 673, 835, and 1135 amino-acid-regulated genes were identified having significantly changed expression at one or more time points in response to valine, glutamate, and glutamine, respectively, including genes involved in cell wall, cellular import, metabolism of amino-acids and nucleotides, transcriptional regulation, flagellar motility, chemotaxis, phage proteins, sporulation, and many genes of unknown function. Different amino acid treatments were compared in terms of both the global temporal profiles and the 5-minute quick regulations, and between-experiment differential genes were identified. The highlighted genes were analyzed based on diverse sources of gene functions using a variety of computational tools, including T-profiler analysis, and hierarchical clustering. The results revealed the common and distinct modes of action of these three amino acids, and should help to elucidate the specific signaling mechanism of each amino acid as an effector

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd

    Accuracy of Close-Coupling Approaches using Single-Centre Expansions for Positron-Lithium Scattering

    No full text
    For positron-atom scattering, the break-up channel contains both the effects of ionization and positronium formation. In a single-centre close-coupling expansion, these effects must be contained in the bound and continuum states. In previous R-matrix calculations for positron-lithium scattering, it was found that the cross sections for exciting the 3d state were anomalously large and it has been argued that the atomic d-states try to represent the positronium formation channels and in so doing overestimate the cross sections for excitation to this state. It has further been argued that the only way to avoid this problem is to use a two-centre basis set expansion. We have investigated this hypothesis for positron-lithium scattering using a single-centre convergent close-coupling method and have found that accurate N = 2 and 3 cross sections can be obtained using a single-centre expansion even for energies just above the ionization threshold

    Hartree-Fock Treatment of Exchange in (e, 2e) Collisions

    No full text
    The distorted-wave Born approximation has been very successful for treating electron-impact ionization (e, 2e) of heavy atoms for high-energy incident electrons. However, as the energy of the incident electrons approaches threshold, significant differences between experiment and theory are observed. In these calculations, the continuum projectile electron wavefunction is typically calculated using the static field of the atom plus a local approximation for electron exchange. While this approximation is believed to be reasonable for higher energies, it is likely to become unreliable for energies near threshold. Here we report a proper treatment of electron exchange in which a full Hartree-Fock calculation is performed for both the atomic and projectile electrons. For the initial state, the projectile orbitals are calculated in the Hartree-Fock approximation with full exchange with the target electrons and for the final state, the Hartree-Fock continuum orbitals are computed for an ion. It is found that the static-exchange approximation is not valid for lower incident energy projectiles

    Understanding the Dependence of Micropollutant Biotransformation Rates on Short-Term Temperature Shifts

    No full text
    Temperature is a key factor that influences chemical biotransformation potential and rates, on which exposure and fate models rely to predict the environmental (micro)pollutant fate. Arrhenius-based models are currently implemented in environmental exposure assessment to adapt biotransformation rates to actual temperatures, assuming validity in the 0–30 °C range. However, evidence on how temperature shifts affect the physicochemical and microbial features in biological systems is scarce, questioning the validity of the existing modeling approaches. In this work, laboratory-scale batch assays were designed to investigate how a mixed microbial community responds to short-term temperature shifts, and how this impacts its ability to biotransform a range of structurally diverse micropollutants. Our results revealed three distinct kinetic responses at temperatures above 20 °C, mostly deviating from the classic Arrhenius-type behavior. Micropollutants with similar temperature responses appeared to undergo mostly similar initial biotransformation reactions, with substitution-type reactions maintaining Arrhenius-type behavior up to higher temperatures than oxidation-type reactions. Above 20 °C, the microbial community also showed marked shifts in both composition and activity, which mostly correlated with the observed deviations from Arrhenius-type behavior, with compositional changes becoming a more relevant factor in biotransformations catalyzed by more specific enzymes (e.g., oxidation reactions). Our findings underline the need to re-examine and further develop current environmental fate models by integrating biological aspects, to improve accuracy in predicting the environmental fate of micropollutants
    corecore