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Comparison of Electron-Atom Collision Parameters forS to P Transitions
under Reversal of Energy Transfer
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1Laser Atomic Physics Laboratory, School of Science, Griffith University, Brisbane, Queensland, 4111, Australia

2Laboratory for Atomic, Molecular and Optical Research, University of Missouri-Rolla, Rolla, Missouri 65401
3Electronic Structure of Materials Centre, Flinders University, Adelaide, South Australia 5001, Australia

(Received 1 May 1998)

Inelastic and superelastic electron scattering from the optically prepared32P3y2 state of sodium has
enabled atomic collision parameters to be deduced for the4S-3P deexcitation and the3S-3P excitation
processes. These data are compared with convergent close coupling and second order distorted wave
Born calculations. For excitation, both theories agree with experiment, whereas for deexcitation the
close coupling theory is in better agreement. A long-standing proposal relating to the sign of the
transferred angular momentum is not supported. [S0031-9007(98)07775-8]

PACS numbers: 34.80.Dp

Extensive studies of electron collision-induced atomic
transitions involving the ground state performed over
the last 25 years have resulted in a substantial body of
experimental data and have stimulated the development
of a number of theoretical models ([1–3], and references
therein). By contrast, few investigations have been
devoted to electron-impact excitation of transitions be-
tweenexcitedatomic states [4–7]. Theoretical models of
electron-impact excitation, developed for atoms initially
in the strongly bound ground state, may not be applicable
for transitions between excited states that are less strongly
bound to the atomic core. Electron excitation involving
excited states plays an important role in electrical dis-
charges, astrophysics, and in many branches of plasma
physics, and so the study of these processes is of relevance
in a number of different fields.

Experimental techniques, such as electron-photon co-
incidence and superelastic methods, allow measurements
of comprehensive sets of observables called the atomic
collision parameters (ACPs), which directly relate to
the complex scattering amplitudes. ACP measurements
complement excitation differential cross section (DCS)
measurements while providing more sensitive tests of dif-
ferent theoretical models. When the spin of the incident
and scattered electron is not measured, a subset of the
complete set of collision parameters is obtained. For tran-
sitions betweenS and P states for which spin-orbit in-
teractions are negligible, four spin unresolved ACPs are
required: the angular momentum transferred perpendicu-
lar to the scattering planeL', the degree of anisotropy of
the atomic charge cloudP,, the charge cloud alignment
angleg, and the degree of coherenceP1 [3].

Of particular interest is the behavior ofL' as a function
of scattering angle [8–10]. An analysis of general trends
in the behavior of this parameter was performed in 1981 by
Madison and Winters [11]. By expressing this parameter
in terms of a Born series expansion for the transition
matrix up to second order, their analysis indicated that
for a groundS state to excitedP state transition,L'

should be positive at small scattering angles and negative
at larger angles. This qualitative prediction was supported
for sodium by calculations using a second order distorted
wave Born (DWB2) theory [12] and by experiment [13].

Madison and Winters further proposed that for a posi-
tive projectile (i.e., for positron scattering),L' would be
negative at all scattering angles. Based on this Born se-
ries expansion, Andersen and Hertel [14] suggested that a
reversal of energy transfer for electron scattering should
have a similar effect on theL' parameter. Consequently,
L' should be negative at all scattering angles for electron
impact deexcitation from anS to a P state. One of the
principal aims of the experimental investigations presented
here was to test these assertions while additionally provid-
ing a set of ACPs for the excited state transition.

Two main techniques are currently used to obtain ACPs
for transitions involving the ground state. In electron-
photon coincidence experiments, inelastically scattered
electrons are detected in coincidence with fluorescence
photons emanating from the decay of the excited atoms.
Polarization analysis of the fluorescence enables the ACPs
to be deduced. Alternatively, superelastic scattering ex-
periments prepare the target atoms in a known excited
state with coherent laser radiation. The superelastically
scattered electron rate is then measured as a function of
laser polarization and scattering angle. This allows the
ACPs to be obtained since the deexcitation process can be
regarded as the time inverse of the excitation process [3].

A technique similar to superelastic scattering is used
here to measure ACPs for transitions betweenexcited
atomicP andS states. The difference is that theinelas-
tically scattered electrons inducingP to S state transitions
are detected. These experiments, performed in the “time-
inverse” geometry, allow information to be obtained about
the electron-impact deexcitation from anS to a P state.
A theory detailing these measurements which exploits the
principle of microreversibility has been presented [15].

The first excited state ACP measurements for sodium
were performed by Hermannet al. [6]. However, only
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two parameters were measured over a limited range of
scattering angles from 5± to 10±. No measurements of
theL' parameter were reported. No experimental results
reported so far have allowed a test of the behavior of theL'

parameter when the energy transfer between the incident
electron and target atom is reversed.

In this Letter, the first measurements of ACPs for the
electron-impact induced4S-3P transition in sodium are re-
ported. The measurements are compared with convergent
close coupled (CCC) and DWB2 calculations. Sodium
provides an excellent candidate for a study of the scat-
tering process between excited states since the4S state
of sodium is energetically more than halfway between the
ground state and the ionization threshold. The electron is
therefore more weakly bound to the atomic core, and this
may play a role in the interaction process. The4S state is
the next excited state above the3P state and is well sepa-
rated from all other states.

Investigation of the3S to 3P and4S to 3P transitions
in sodium allows the differences between electron-impact
excitation and deexcitation to be investigated, providing an
ideal test bed for the proposals discussed above. In both
the3S to 3P and4S to 3P transitions, angular momentum
is transferred from the projectile electron to the target atom,
but in the former case the atomgainsenergy while in the
latter case energy is lost. The3S to 3P transition has been
extensively investigated [16]. However, to allow direct
comparison not influenced by differences in experimental
conditions, measurements for the3S to 3P transition were
performed simultaneously with4S to 3P measurements in
the same apparatus during this work.

Experimentally, the ACPs were determined from the
pseudo-Stokes parameters obtained by measuring the scat-
tered electron count rate from the laser excited state as a
function of laser polarization in the time-inverse geome-
try [15]. Laser radiation, tuned to excite the3P3y2 state
of sodium is propagated perpendicular to the scattering
plane defined by the incident electron beam and the scat-
tered electron directions. The pseudo-Stokes parameters
are given by [17]
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where Sfsud is the scattered electron count rate from
the target excited with linearly polarized laser light with
polarization anglew to the direction of the scattered elec-
tron u, andSRHCsud andSLHCsud are the scattered elec-
tron count rates from atoms excited with right-hand and
left-hand circularly polarized laser light, respectively. A
description of the experimental apparatus is given in [15].
The ACPs are deduced according to the formulas [3]
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whereK andK 0 are optical pumping parameters account-
ing for hyperfine interactions during laser excitation with
linear and circular polarizations, respectively.

The optical pumping parameters were calculated using
a full QED description of the laser excitation process
[17] and were found to beK  0.36 and K 0  20.99
for the experimental conditions used in this work. The
K parameter, which is sensitive to laser frequency tuning
and intensity, was also verified experimentally from the
fluorescence line polarization.

The pseudo-Stokes parameters were measured for the
3P-3S and 3P-4S transitions at incident electron ener-
gies of 19.9 and 23.1 eV, respectively, corresponding to an
equivalent incident electron energy of 22 eV for the exci-
tation and deexcitation processes. Figures 1–4 show the
ACPs as functions of scattering angle for (a) the4S-3P
transition and (b) the3S-3P transition. The experimen-
tal uncertainties shown are 1 standard deviation. These
figures also show the results of the DWB2 and CCC
calculations.

The behavior of theL' parameter for4S-3P deexcita-
tion is found to be very different fromL' for 3S-3P ex-
citation (Fig. 1). For the3S-3P transition,L' is positive
for positive scattering angles and increases with scattering

FIG. 1. The L' parameter for (a) the4S-3P and (b) the
3S-3P transitions as a function of scattering angle. The solid
lines show the CCC calculations, whereas the dashed lines show
the DWB2 calculations.
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angle reaching a maximum of approximately 0.7 at a
scattering angle around 24±. This behavior is in accord
with the qualitative predictions discussed above. Both
the CCC and DWB2 calculations are in agreement with
measurements.

From the4S-3P transition, the situation is quite differ-
ent. For this transition,L' is almost zero at scattering
angles below 8±, then decreases to a negative value of
20.25 at a scattering angle of 15± in accordance with the
suggestion of Andersen and Hertel [14] thatL' should
be negative for the4S-3P transition. However, at higher
scattering anglesL' inverts and becomes positive, increas-
ing to larger values with increasing scattering angle. This
behavior is not predicted by the qualitative arguments pre-
sented above. The CCC calculation is in excellent agree-
ment with experiment, whereas the DWB2 calculation
predicts values much greater than determined experimen-
tally, reaching almost unity (full orientation) at620±. It
is curious that the DWB2 is in better agreement with the
data for3S-3P than4S-3P. Since the energy transfer for
4S-3P is smaller than3S-3P, one would expect a pertur-
bative approach to be better for the4S-3P transition. An
examination of the contribution of first and second order
effects in distorted wave calculations reveals that, out to
scattering angles of 20±, L' is dominated by first order
effects. The Born approximation, on the other hand, pre-
dicts zero forL' which is arguably closer to the4S-3P
data than the distorted wave results. Consequently, first
order distortion is producing unphysically large results for
L' for the excited state.

The Pl parameter (Fig. 2) is similar for the3S-3P
and 4S-3P transitions for small scattering angles which
at approximately 0.85 indicates a high degree of charge
cloud anisotropy. Within experimental uncertainty,Pl

then decreases for scattering angles greater than 15± for
both transitions. Both the CCC and DWB2 calculations
predict Pl reasonably well for the3S-3P transition.
However, for the4S-3P transition the CCC calculation
predicts noticeably larger values than experiment, whereas
the DWB2 calculation appears in better agreement. This
agreement may be fortuitous, since the large value of the
L' parameter at620± predicted by the DWB2 calculation
requires that thePl parameter must reduce to close to zero
at these angles sinceP2

l 1 L2
' # 1.

In the first Born approximation, the alignment angleg is
the angle between the beam direction and the momentum
transfer direction [3,18]. In this approximation,g will be
negative for3S-3P and positive for4S-3P. Typically,
experimental and theoretical results forg are close to
the Born approximation, and it has been pointed out
that the orientation of the charge cloud relative to the
momentum transfer direction is more interesting than the
deviation from the beam direction [18]. Experimental and
theoretical results forg are presented in Fig. 3. The two
cases follow the prediction of the Born approximation with
g being negative for3S-3P and positive for4S-3P. In
fact, the good agreement between the data and the Born

FIG. 2. ThePl parameter for (a) the4S-3P and (b) the3S-3P
transitions as a function of scattering angle. Circles present the
current experimental measurements. The solid lines show the
CCC calculations, whereas the dashed lines show the DWB2
calculations.

results demonstrates that the charge cloud is nearly aligned
with the momentum transfer direction in this angular range.
Both the DWB2 and CCC are in close accord with each
other and the experiment for the3S-3P transition. For
the 4S-3P transition, the CCC calculation provides very
close agreement to the experimental data, while the DWB2
model agrees within 1 standard deviation at all but one data
point. The structure in the DWB2 near 20± results from a
minimum inP1 occurring at the same angle thatP2 passes
through zero which means that it is quite sensitive to the
details of the calculation.

The P1 parameter (Fig. 4) provides information about
the significance of spin exchange in electron-atom colli-
sions. In the absence of spin exchangeP1 is unity [1–3].
For the 3S-3P excitation,P1 is found to be near unity
at small scattering angles, decreasing slightly at 18± to
26± thereby indicating (within 1 standard deviation) some
spin-exchange effects. A small spin-exchange effect is
predicted by the DWB2 calculation for this transition, in
contrast to the CCC model. For the4S-3P deexcitation,
both theories predict theP1 parameter to be very close to
unity. By contrast, within 1 standard deviation, the experi-
mental results for the4S-3P transition yield values ofP1

below unity at angles of 18± and 22±. This may indicate
some spin-exchange effects at these scattering angles al-
though the error bars are large at these angles.

The set of ACPs for the4S-3P transition presented
here clearly differ from those for the3S-3P transition
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FIG. 3. Theg parameter for (a) the4S-3P and (b) the3S-3P
transitions as a function of scattering angle. The solid lines
show the CCC calculations, the full dashed lines show the
DWB2 calculations, and the smaller dashed lines are the first
Born results.

and contain more angular structure. The suggestion of
Andersen and Hertel [14] that theL' parameter for the
4S-3P transition should have a different sign from the
3S-3P transition is supported only for scattering angles
below 10± to 12±.

The CCC and DWB2 models, which are both successful
for the 3S-3P transition, are in less accord with each
other and with the measurements for the4S-3P transition.
The CCC is in excellent agreement with experiments for
L' and g. For Pl and P1, on the other hand, the
CCC predicts values near unity while the experimental
results suggest significant nonunity values. The DWB2
predicts nearly unity forP1 and a significant deviation for
Pl in agreement with experiment. This agreement may
be fortuitous, however, since the DWB2 is significantly
larger than the experiment forL'. The experimental
results for theP1 parameter indicate more significant
spin-exchange effects for the4S-3P transition than for
the 3S-3P transition as well as more significant spin-
exchange effects than either theory predicts. However, the
experimental error bars are large so further experiments
with reduced uncertainty and at larger scattering angles are
clearly desirable. If improved measurements support the
present findings, further theoretical investigations of the
importance of spin exchange will be warranted.

This work has been supported by the Australian Re-
search Council and the U.S. Natural Science Founda-
tion. The authors acknowledge helpful discussions with
K. Bartschat.

FIG. 4. The P1 parameter for (a) the4S-3P and (b) the
3S-3P transitions as a function of scattering angle. The solid
lines show the CCC calculations, whereas the dashed lines show
the DWB2 calculations.

*Present address: Harvard-Smithsonian Centre for Astro-
physics, Cambridge, MA 02138.

†To whom correspondence should be addressed.
Electronic address: W.MacGillivray@sct.gu.edu.au

[1] N. Andersenet al., Phys. Rep.279, 251 (1997).
[2] N. Andersen and K. Bartschat, Adv. At. Mol. Opt. Phys.

36, 1 (1996).
[3] N. Andersenet al., Phys. Rep.165, 1 (1988).
[4] C. C. Lin and L. W. Anderson, Adv. At. Mol. Opt. Phys.

29, 1 (1992).
[5] S. Trajmar and J. C. Nickel, Adv. At. Mol. Opt. Phys.30,

45 (1993).
[6] H. W. Hermannet al., J. Phys. B10, 251 (1977).
[7] G. A. Peachet al., Phys. Rev. Lett.81, 309 (1998).
[8] H. W. Hermannet al., J. Phys. B13, 3465 (1980).
[9] N. Andersenet al., J. Phys. B17, L901 (1984).

[10] D. H. Madisonet al., J. Phys. B19, 3361 (1986).
[11] D. H. Madison and K. H. Winters, Phys. Rev. Lett.47,

1885 (1981).
[12] V. E. Bubelevet al., J. Phys. B29, 1751 (1996).
[13] R. E. Scholtenet al., J. Phys. B24, L653 (1991).
[14] N. Andersen and I. Hertel, Comments At. Mol. Phys.19,

1 (1986).
[15] M. Shurgalinet al., J. Phys. B31, 4205 (1998).
[16] See, for example, [3], and references therein; R. E.

Scholtenet al., J. Phys. B26, 987 (1993); R. T. Sang
et al., J. Phys. B27, 1187 (1994).

[17] P. M. Farrellet al., Phys. Rev. A44, 1828 (1991).
[18] N. Andersen and K. Bartschat, J. Phys. B30, 5071

(1997).

4607


	Comparison of Electron-Atom Collision Parameters for S to P Transitions under Reversal of Energy Transfer
	Recommended Citation

	tmp.1515762791.pdf.OskPo

