564 research outputs found

    Photoactivation of an Acid-Sensitive Ion Channel Associated with Vision and Pain

    Get PDF
    We describe the reversible photoactivation of the acid sensitive ligand-gated ion channel ASIC2a, a mammalian channel found throughout the central and peripheral nervous systems that is associated with vision and pain. We also show the activation of GLIC, an acid-sensitive prokaryotic homologue of the nicotinic acetylcholine receptor. Photoactivation was achieved by using visible light irradiation of a newly synthesized water-soluble merocyanine photoacid, 1, which was designed to remove adverse channel blocking effects of a related system. Activation of ASIC2a and GLIC occurs reversibly, in a benign manner, and only upon irradiation. Further studies using transient absorption spectroscopy showed that protonation of a colorimetric base occurred rapidly (ca. 100 Όs) after excitation of 1. These results demonstrate that irradiation of 1 can induce rapid, local pH changes that can be used to investigate both biological and chemical proton transfer reactions

    Interaction of Ultrashort-Laser Pulses with Induced Undercritical Plasmas in Fused Silica

    Get PDF
    Ultrafast light-material interactions near the damage threshold are often studied using postmortem analysis of damaged dielectric materials. Corresponding simulations of ultrashort pulse propagation through the material are frequently used to gain additional insight into the processes leading to such damage. However, comparison between such experimental and numerical results is often qualitative, and pulses near to but not exceeding the damage threshold leave no permanent changes in the material for postmortem analysis. In this article, a series of experiments is presented that measures the near- and far-field properties of a 140-fs laser pulse after propagation through a fused silica sample in which a noncritical electron plasma was generated. Concurrently, results from simulations in which the laser pulse was numerically constructed according to the nearfield beam profile and frequency resolved optical gating (FROG) trace are presented. It is found that to extract a quantitative comparison of such data, cylindrical symmetry of the laser pulse in simulations should be abandoned in favor of a fully 3+1D Cartesian representation. Further comparison of experimental and calculated damage thresholds shows that time-corrective effects predicted by the Drude model play a critical role in the physics of both pulse evolution and plasma formation. The influence of resulting spatiotemporal dependences of the pulse in far-field measurements leads to unretrievable FROG traces. However, it is shown through both simulation and experiment that the use of an appropriate beam aperture will eliminate this effect when measuring the temporal pulse amplitude

    Luminescent Ruthenium(II)− and Rhenium(I)−Diimine Wires Bind Nitric Oxide Synthase

    Get PDF
    Ru(II)− and Re(I)−diimine wires bind to the oxygenase domain of inducible nitric oxide synthase (iNOSoxy). In the ruthenium wires, [Ru(L)_2L‘]^(2+), L‘ is a perfluorinated biphenyl bridge connecting 4,4‘-dimethylbipyridine to a bulky hydrophobic group (adamantane, 1), a heme ligand (imidazole, 2), or F (3). 2 binds in the active site of the murine iNOSoxy truncation mutants Δ65 and Δ114, as demonstrated by a shift in the heme Soret from 422 to 426 nm. 1 and 3 also bind Δ65 and Δ114, as evidenced by biphasic luminescence decay kinetics. However, the heme absorption spectrum is not altered in the presence of 1 or 3, and Ru−wire binding is not affected by the presence of tetrahydrobiopterin or arginine. These data suggest that 1 and 3 may instead bind to the distal side of the enzyme at the hydrophobic surface patch thought to interact with the NOS reductase module. Complexes with properties similar to those of the Ru−diimine wires may provide an effective means of NOS inhibition by preventing electron transfer from the reductase module to the oxygenase domain. Rhenium−diimine wires, [Re(CO)_3L_1L_1‘]+, where L_1 is 4,7-dimethylphenanthroline and L_1‘ is a perfluorinated biphenyl bridge connecting a rhenium-ligated imidazole to a distal imidazole (F_8bp-im) (4) or F (F_9bp) (5), also form complexes with Δ114. Binding of 4 shifts the Δ114 heme Soret to 426 nm, demonstrating that the terminal imidazole ligates the heme iron. Steady-state luminescence measurements establish that the 4:Δ114 dissociation constant is 100 ± 80 nM. Re−wire 5 binds Δ114 with a K_d of 5 ± 2 ÎŒM, causing partial displacement of water from the heme iron. Our finding that both 4 and 5 bind in the NOS active site suggests novel designs for NOS inhibitors. Importantly, we have demonstrated the power of time-resolved FET measurements in the characterization of small molecule:protein interactions that otherwise would be difficult to observe

    Unraveling local tissue changes within severely injured skeletal muscles in response to MSC-based intervention using MALDI Imaging mass spectrometry

    Get PDF
    Pre-clinical and clinical studies are now beginning to demonstrate the high potential of cell therapies in enhancing muscle regeneration. We previously demonstrated functional benefit after the transplantation of autologous bone marrow mesenchymal stromal cells (MSC-TX) into a severe muscle crush trauma model. Despite our increasing understanding of the molecular and cellular mechanisms underlying MSC's regenerative function, little is known about the local molecular alterations and their spatial distribution within the tissue after MSC-TX. Here, we used MALDI imaging mass spectrometry (MALDI-IMS) in combination with multivariate statistical strategies to uncover previously unknown peptide alterations within severely injured skeletal muscles. Our analysis revealed that very early molecular alterations in response to MSC-TX occur largely in the region adjacent to the trauma and only to a small extent in the actual trauma region. Using "bottom up" mass spectrometry, we subsequently identified the proteins corresponding to the differentially expressed peptide intensity distributions in the specific muscle regions and used immunohistochemistry to validate our results. These findings extend our current understanding about the early molecular processes of muscle healing and highlights the critical role of trauma adjacent tissue during the early therapeutic response upon treatment with MSC

    The effects of an aerobic training intervention on cognition, grey matter volumes and white matter microstructure

    Get PDF
    While there is strong evidence from observational studies that physical activity is associated with reduced risk of cognitive decline and dementia, the extent to which aerobic training interventions impact on cognitive health and brain structure remains subject to debate. In a pilot study of 46 healthy older adults (66.6 years ± 5.2 years, 63% female), we compared the effects of a twelve-week aerobic training programme to a waitlist control condition on cardiorespiratory fitness, cognition and magnetic resonance imaging (MRI) outcomes. Cardiorespiratory fitness was assessed by VO2 max testing. Cognitive assessments spanned executive function, memory and processing speed. Structural MRI analysis included examination of hippocampal volume, and voxel-wise assessment of grey matter volumes using voxel-based morphometry. Diffusion tensor imaging analysis of fractional anisotropy, axial diffusivity and radial diffusivity was performed using tract-based spatial statistics. While the intervention successfully increased cardiorespiratory fitness, there was no evidence that the aerobic training programme led to changes in cognitive functioning or measures of brain structure in older adults. Interventions that are longer lasting, multi-factorial, or targeted at specific high-risk populations, may yield more encouraging results

    Verkehr in Zahlen 2021/2022

    Get PDF
    Verkehr in Zahlen (ViZ) ist seit knapp 50 Jahren das Standardwerk zur Verkehrsstatistik in Deutschland. Das Kompendium enthĂ€lt auf ĂŒber 300 Seiten aktuelle Zahlen und Zeitreihen zu allen Themen aus den Bereichen MobilitĂ€t und Verkehr

    Anxiety modulates the relation between attention-deficit/hyperactivity disorder severity and working memory-related brain activity

    Get PDF
    Objectives: Individuals with attention-deficit/hyperactivity disorder (ADHD) often have heightened levels of anxiety, which has been associated with worse performance on working memory tasks. Knowledge of the neural pathways underlying the combined presence of ADHD and anxiety may aid in a better understanding of their co-occurrence. Therefore, we investigated how anxiety modulates the effect of ADHD severity on neural activity during a visuospatial working memory (VSWM) task.Methods: Neuroimaging data were available for 371 adolescents and young adults participating in the multicentre cohort study NeuroIMAGE (average age 17.1 years). We analysed the effects of ADHD severity, anxiety severity and their interaction on-task accuracy, and on neural activity associated with working memory (VSWM trials minus baseline), and memory load (high memory load trials minus low load trials).Results: Anxiety significantly modulated the relation between ADHD severity and neural activity in the cerebellum for the working memory contrast, and bilaterally in the striatum and thalamus for the memory load contrast.Conclusions: We found that ADHD with co-occurring anxiety is associated with lowered neural activity during a VSWM task in regions important for information gating. This fits well with previous theorising on ADHD with co-occurring anxiety, and illustrates the neurobiological heterogeneity of ADHD

    Picosecond Photoreduction of Inducible Nitric Oxide Synthase by Rhenium(I)−Diimine Wires

    Get PDF
    In a continuing effort to unravel mechanistic questions associated with metalloenzymes, we are developing methods for rapid delivery of electrons to deeply buried active sites. Herein, we report picosecond reduction of the heme active site of inducible nitric oxide synthase bound to a series of rhenium−diimine electron-tunneling wires, [Re(CO)_3LL‘]^+, where L is 4,7-dimethylphenanthroline and L‘ is a perfluorinated biphenyl bridge connecting a rhenium-ligated imidazole or aminopropylimidazole to a distal imidazole (F_8bp-im (1) and C_3-F_8bp-im (2)) or F (F_9bp (3) and C_3-F_9bp (4)). All four wires bind tightly (K_d in the micromolar to nanomolar range) to the tetrahydrobiopterin-free oxidase domain of inducible nitric oxide synthase (iNOSoxy). The two fluorine-terminated wires displace water from the active site, and the two imidazole-terminated wires ligate the heme iron. Upon 355-nm excitation of iNOSoxy conjugates with 1 and 2, the active site Fe(III) is reduced to Fe(II) within 300 ps, almost 10 orders of magnitude faster than the naturally occurring reduction

    Inhibiting phosphoglycerate dehydrogenase counteracts chemotherapeutic efficacy against MYCN‐amplified neuroblastoma

    Get PDF
    Here we sought metabolic alterations specifically associated with MYCN amplification as nodes to indirectly target the MYCN oncogene. Liquid chromatography-mass spectrometry-based proteomics identified seven proteins consistently correlated with MYCN in proteomes from 49 neuroblastoma biopsies and 13 cell lines. Among these was phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in de novo serine synthesis. MYCN associated with two regions in the PHGDH promoter, supporting transcriptional PHGDH regulation by MYCN. Pulsed stable isotope-resolved metabolomics utilizing C-13-glucose labeling demonstrated higher de novo serine synthesis in MYCN-amplified cells compared to cells with diploid MYCN. An independence of MYCN-amplified cells from exogenous serine and glycine was demonstrated by serine and glycine starvation, which attenuated nucleotide pools and proliferation only in cells with diploid MYCN but did not diminish these endpoints in MYCN-amplified cells. Proliferation was attenuated in MYCN-amplified cells by CRISPR/Cas9-mediated PHGDH knockout or treatment with PHGDH small molecule inhibitors without affecting cell viability. PHGDH inhibitors administered as single-agent therapy to NOG mice harboring patient-derived MYCN-amplified neuroblastoma xenografts slowed tumor growth. However, combining a PHGDH inhibitor with the standard-of-care chemotherapy drug, cisplatin, revealed antagonism of chemotherapy efficacy in vivo. Emergence of chemotherapy resistance was confirmed in the genetic PHGDH knockout model in vitro. Altogether, PHGDH knockout or inhibition by small molecules consistently slows proliferation, but stops short of killing the cells, which then establish resistance to classical chemotherapy. Although PHGDH inhibition with small molecules has produced encouraging results in other preclinical cancer models, this approach has limited attractiveness for patients with neuroblastoma
    • 

    corecore