146 research outputs found

    Spannungsfelder des Zusammenlebens

    Get PDF
    [Abstract fehlt

    Tideglusib Rescues Neurite Pathology of SPG11 iPSC Derived Cortical Neurons

    Get PDF
    Mutations in SPG11 cause a complicated autosomal recessive form of hereditary spastic paraplegia (HSP). Mechanistically, there are indications for the dysregulation of the GSK3β/βCat signaling pathway in SPG11. In this study, we tested the therapeutic potential of the GSK3β inhibitor, tideglusib, to rescue neurodegeneration associated characteristics in an induced pluripotent stem cells (iPSCs) derived neuronal model from SPG11 patients and matched healthy controls as well as a CRISPR-Cas9 mediated SPG11 knock-out line and respective control. SPG11-iPSC derived cortical neurons, as well as the genome edited neurons exhibited shorter and less complex neurites than controls. Administration of tideglusib to these lines led to the rescue of neuritic impairments. Moreover, the treatment restored increased cell death and ameliorated the membranous inclusions in iPSC derived SPG11 neurons. Our results provide a first evidence for the rescue of neurite pathology in SPG11-HSP by tideglusib. The current lack of disease-modifying treatments for SPG11 and related types of complicated HSP renders tideglusib a candidate compound for future clinical application

    Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo

    Get PDF
    The toxicity of α-synuclein invivo is not well understood. Rockenstein etal. describe an α-synuclein transgenic model expressing the E57K mutant that forms stable oligomers. They show that oligomers accumulate at synapses and that the mutation interferes with synaptic vesicles and is associated with behavioural deficits and neurodegeneratio

    Pathogenic SCN2A variants cause early-stage dysfunction in patient-derived neurons

    Full text link
    Pathogenic heterozygous variants in SCN2A, which encodes the neuronal sodium channel NaV1.2, cause different types of epilepsy or intellectual disability (ID)/autism without seizures. Previous studies using mouse models or heterologous systems suggest that NaV1.2 channel gain-of-function typically causes epilepsy, whereas loss-of-function leads to ID/autism. How altered channel biophysics translate into patient neurons remains unknown. Here, we investigated iPSC-derived early-stage cortical neurons from ID patients harboring diverse pathogenic SCN2A variants [p.(Leu611Valfs*35); p.(Arg937Cys); p.(Trp1716*)], and compared them to neurons from an epileptic encephalopathy patient [p.(Glu1803Gly)] and controls. ID neurons consistently expressed lower NaV1.2 protein levels. In neurons with the frameshift variant, NaV1.2 mRNA and protein levels were reduced by ~ 50%, suggesting nonsense-mediated decay and haploinsufficiency. In other ID neurons, only protein levels were reduced implying NaV1.2 instability. Electrophysiological analysis revealed decreased sodium current density and impaired action potential (AP) firing in ID neurons, consistent with reduced NaV1.2 levels. By contrast, epilepsy neurons displayed no change in NaV1.2 levels or sodium current density, but impaired sodium channel inactivation. Single-cell transcriptomics identified dysregulation of distinct molecular pathways including inhibition of oxidative phosphorylation in neurons with SCN2A haploinsufficiency, and activation of calcium signaling and neurotransmission in epilepsy neurons. Together, our patient iPSC-derived neurons reveal characteristic sodium channel dysfunction consistent with biophysical changes previously observed in heterologous systems. Additionally, our model links the channel dysfunction in ID to reduced NaV1.2 levels and uncovers impaired AP firing in early-stage neurons. The altered molecular pathways may reflect a homeostatic response to NaV1.2 dysfunction and can guide further investigations

    Antimicrobial use in pediatric oncology and hematology in Germany and Austria, 2020/2021: a cross-sectional, multi-center point-prevalence study with a multi-step qualitative adjudication process

    Get PDF
    Background Due to the high risk of severe infection among pediatric hematology and oncology patients, antimicrobial use is particularly high. With our study, we quantitatively and qualitatively evaluated, based on institutional standards and national guidelines, antimicrobial usage by employing a point-prevalence survey with a multi-step, expert panel approach. We analyzed reasons for inappropriate antimicrobial usage. Methods This cross-sectional study was conducted at 30 pediatric hematology and oncology centers in 2020 and 2021. Centers affiliated to the German Society for Pediatric Oncology and Hematology were invited to join, and an existing institutional standard was a prerequisite to participate. We included hematologic/oncologic inpatients under 19 years old, who had a systemic antimicrobial treatment on the day of the point prevalence survey. In addition to a one-day, point-prevalence survey, external experts individually assessed the appropriateness of each therapy. This step was followed by an expert panel adjudication based upon the participating centers’ institutional standards, as well as upon national guidelines. We analyzed antimicrobial prevalence rate, along with the rate of appropriate, inappropriate, and indeterminate antimicrobial therapies with regard to institutional and national guidelines. We compared the results of academic and non-academic centers, and performed a multinomial logistic regression using center- and patient-related data to identify variables that predict inappropriate therapy. Findings At the time of the study, a total of 342 patients were hospitalized at 30 hospitals, of whom 320 were included for the calculation of the antimicrobial prevalence rate. The overall antimicrobial prevalence rate was 44.4% (142/320; range 11.1–78.6%) with a median antimicrobial prevalence rate per center of 44.5% (95% confidence interval [CI] 35.9–49.9). Antimicrobial prevalence rate was significantly higher (p < 0.001) at academic centers (median 50.0%; 95% CI 41.2–55.2) compared to non-academic centers (median 20.0%; 95% CI 11.0–32.4). After expert panel adjudication, 33.8% (48/142) of all therapies were labelled inappropriate based upon institutional standards, with a higher rate (47.9% [68/142]) when national guidelines were taken into consideration. The most frequent reasons for inappropriate therapy were incorrect dosage (26.2% [37/141]) and (de-)escalation/spectrum-related errors (20.6% [29/141]). Multinomial, logistic regression yielded the number of antimicrobial drugs (odds ratio, OR, 3.13, 95% CI 1.76–5.54, p < 0.001), the diagnosis febrile neutropenia (OR 0.18, 95% CI 0.06–0.51, p = 0.0015), and an existing pediatric antimicrobial stewardship program (OR 0.35, 95% CI 0.15–0.84, p = 0.019) as predictors of inappropriate therapy. Our analysis revealed no evidence of a difference between academic and non-academic centers regarding appropriate usage. Interpretation Our study revealed there to be high levels of antimicrobial usage at German and Austrian pediatric oncology and hematology centers with a significant higher number at academic centers. Incorrect dosing was shown to be the most frequent reason for inappropriate usage. Diagnosis of febrile neutropenia and antimicrobial stewardship programs were associated with a lower likelihood of inappropriate therapy. These findings suggest the importance of febrile neutropenia guidelines and guidelines compliance, as well as the need for regular antibiotic stewardship counselling at pediatric oncology and hematology centers. Funding European Society of Clinical Microbiology and Infectious Diseases, Deutsche Gesellschaft für Pädiatrische Infektiologie, Deutsche Gesellschaft für Krankenhaushygiene, Stiftung Kreissparkasse Saarbrücken
    • …
    corecore