6 research outputs found

    Comparison between micro- and nanosized copper oxide and water soluble copper chloride : Interrelationship between intracellular copper concentrations, oxidative stress and DNA damage response in human lung cells

    Get PDF
    Background: Nano- and microscale copper oxide particles (CuO NP, CuO MP) are applied for manifold purposes, enhancing exposure and thus the potential risk of adverse health effects. Based on the pronounced in vitro cytotoxicity of CuO NP, systematic investigations on the mode of action are required. Therefore, the impact of CuO NP, CuO MP and CuClâ‚‚ on the DNA damage response on transcriptional level was investigated by quantitative gene expression profiling via high-throughput RT-qPCR. Cytotoxicity, copper uptake and the impact on the oxidative stress response, cell cycle regulation and apoptosis were further analysed on the functional level. Results: Cytotoxicity of CuO NP was more pronounced when compared to CuO MP and CuClâ‚‚ in human bronchial epithelial BEAS-2B cells. Uptake studies revealed an intracellular copper overload in the soluble fractions of both cytoplasm and nucleus, reaching up to millimolar concentrations in case of CuO NP and considerably lower levels in case of CuO MP and CuClâ‚‚. Moreover, CuClâ‚‚ caused copper accumulation in the nucleus only at cytotoxic concentrations. Gene expression analysis in BEAS-2B and A549 cells revealed a strong induction of uptake-related metallothionein genes, oxidative stress-sensitive and pro-inflammatory genes, anti-oxidative defense-associated genes as well as those coding for the cell cycle inhibitor p21 and the pro-apoptotic Noxa and DR5. While DNA damage inducible genes were activated, genes coding for distinct DNA repair factors were down-regulated. Modulation of gene expression was most pronounced in case of CuO NP as compared to CuO MP and CuClâ‚‚ and more distinct in BEAS-2B cells. GSH depletion and activation of Nrf2 in HeLa S3 cells confirmed oxidative stress induction, mainly restricted to CuO NP. Also, cell cycle arrest and apoptosis induction were most distinct for CuO NP. Conclusions: The high cytotoxicity and marked impact on gene expression by CuO NP can be ascribed to the strong intracellular copper ion release, with subsequent copper accumulation in the cytoplasm and the nucleus. Modulation of gene expression by CuO NP appeared to be primarily oxidative stress-related and was more pronounced in redox-sensitive BEAS-2B cells. Regarding CuClâ‚‚, relevant modulations of gene expression were restricted to cytotoxic concentrations provoking impaired copper homoeostasis

    Comparison between micro- and nanosized copper oxide and water soluble copper chloride: interrelationship between intracellular copper concentrations, oxidative stress and DNA damage response in human lung cells

    No full text
    Abstract Background Nano- and microscale copper oxide particles (CuO NP, CuO MP) are applied for manifold purposes, enhancing exposure and thus the potential risk of adverse health effects. Based on the pronounced in vitro cytotoxicity of CuO NP, systematic investigations on the mode of action are required. Therefore, the impact of CuO NP, CuO MP and CuCl2 on the DNA damage response on transcriptional level was investigated by quantitative gene expression profiling via high-throughput RT-qPCR. Cytotoxicity, copper uptake and the impact on the oxidative stress response, cell cycle regulation and apoptosis were further analysed on the functional level. Results Cytotoxicity of CuO NP was more pronounced when compared to CuO MP and CuCl2 in human bronchial epithelial BEAS-2B cells. Uptake studies revealed an intracellular copper overload in the soluble fractions of both cytoplasm and nucleus, reaching up to millimolar concentrations in case of CuO NP and considerably lower levels in case of CuO MP and CuCl2. Moreover, CuCl2 caused copper accumulation in the nucleus only at cytotoxic concentrations. Gene expression analysis in BEAS-2B and A549 cells revealed a strong induction of uptake-related metallothionein genes, oxidative stress-sensitive and pro-inflammatory genes, anti-oxidative defense-associated genes as well as those coding for the cell cycle inhibitor p21 and the pro-apoptotic Noxa and DR5. While DNA damage inducible genes were activated, genes coding for distinct DNA repair factors were down-regulated. Modulation of gene expression was most pronounced in case of CuO NP as compared to CuO MP and CuCl2 and more distinct in BEAS-2B cells. GSH depletion and activation of Nrf2 in HeLa S3 cells confirmed oxidative stress induction, mainly restricted to CuO NP. Also, cell cycle arrest and apoptosis induction were most distinct for CuO NP. Conclusions The high cytotoxicity and marked impact on gene expression by CuO NP can be ascribed to the strong intracellular copper ion release, with subsequent copper accumulation in the cytoplasm and the nucleus. Modulation of gene expression by CuO NP appeared to be primarily oxidative stress-related and was more pronounced in redox-sensitive BEAS-2B cells. Regarding CuCl2, relevant modulations of gene expression were restricted to cytotoxic concentrations provoking impaired copper homoeostasis

    Phosphodiesterase-4 Inhibition Reduces Cutaneous Inflammation and IL-1β Expression in a Psoriasiform Mouse Model but Does Not Inhibit Inflammasome Activation

    Full text link
    Apremilast (Otezla®) is an oral small molecule phosphodiesterase 4 (PDE4) inhibitor approved for the treatment of psoriasis, psoriatic arthritis, and oral ulcers associated with Behçet’s disease. While PDE4 inhibition overall is mechanistically understood, the effect of apremilast on the innate immune response, particularly inflammasome activation, remains unknown. Here, we assessed the effect of apremilast in a psoriasis mouse model and primary human cells. Psoriatic lesion development in vivo was studied in K5.Stat3C transgenic mice treated with apremilast for 2 weeks, resulting in a moderate (2 mg/kg/day) to significant (6 mg/kg/day) resolution of inflamed plaques after 2-week treatment. Concomitantly, epidermal thickness dramatically decreased, the cutaneous immune cell infiltrate was reduced, and proinflammatory cytokines were significantly downregulated. Additionally, apremilast significantly inhibited lipopolysaccharide- or anti-CD3-induced expression of proinflammatory cytokines in peripheral mononuclear cells (PBMCs). Notably, inflammasome activation and secretion of IL-1β were not inhibited by apremilast in PBMCs and in human primary keratinocytes. Collectively, apremilast effectively alleviated the psoriatic phenotype of K5.Stat3 transgenic mice, further substantiating PDE4 inhibitor-efficiency in targeting key clinical, histopathological and inflammatory features of psoriasis. Despite lacking direct effect on inflammasome activation, reduced priming of inflammasome components upon apremilast treatment reflected the indirect benefit of PDE4 inhibition in reducing inflammation

    A Multi-Endpoint Approach to Base Excision Repair Incision Activity Augmented by PARylation and DNA Damage Levels in Mice : Impact of Sex and Age

    Get PDF
    Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2’-deoxyguanosine (8-oxodG), 5-hydroxy-2’-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery. View Full-Textpublishe
    corecore