18 research outputs found
Reactivation of Epstein–Barr virus by a dual-responsive fluorescent EBNA1-targeting agent with Zn2+-chelating function
EBNA1 is the only Epstein–Barr virus (EBV) latent protein responsible for viral genome maintenance and is expressed in all EBV-infected cells. Zn2+ is essential for oligomerization of the functional EBNA1. We constructed an EBNA1 binding peptide with a Zn2+ chelator to create an EBNA1-specific inhibitor (ZRL5P4). ZRL5P4 by itself is sufficient to reactivate EBV from its latent infection. ZRL5P4 is able to emit unique responsive fluorescent signals once it binds with EBNA1 and a Zn2+ ion. ZRL5P4 can selectively disrupt the EBNA1 oligomerization and cause nasopharyngeal carcinoma (NPC) tumor shrinkage, possibly due to EBV lytic induction. Dicer1 seems essential for this lytic reactivation. As can been seen, EBNA1 is likely to maintain NPC cell survival by suppressing viral reactivation
MicroRNA profiling study reveals MIR-150 in association with metastasis in nasopharyngeal carcinoma
© 2017 The Author(s). MicroRNAs (miRNAs) are small non-coding RNAs that play a crucial role in pathogenesis of human cancers. Several miRNAs have been shown to involve in nasopharyngeal carcinoma (NPC) pathogenesis through alteration of gene networks. A global view of the miRNA expression profile of clinical specimens would be the best way to screen out the possible miRNA candidates that may be involved in disease pathogenesis. In this study, we investigated the expression profiles of miRNA in formalin-fixed paraffin-embedded tissues from patients with undifferentiated NPC versus non-NPC controls using a miRNA real-time PCR platform, which covered a total of 95 cancer-related miRNAs. Hierarchical cluster analysis revealed that NPC and non-NPC controls were clearly segregated. Promisingly, 10 miRNA candidates were differentially expressed. Among them, 9 miRNAs were significantly up-regulated of which miR-205 and miR-196a showed the most up-regulated in NPC with the highest incidence percentage of 94.1% and 88.2%, respectively, while the unique down-regulated miR-150 was further validated in patient sera. Finally, the in vitro gain-of-function and loss-of-function assays revealed that miR-150 can modulate the epithelial-mesenchymal-transition property in NPC/HK-1 cells and led to the cell motility and invasion. miR-150 may be a potential biomarker for NPC and plays a critical role in NPC tumourigenesis.Link_to_subscribed_fulltex
Dengue Virus Infection with Highly Neutralizing Levels of Cross-Reactive Antibodies Causes Acute Lethal Small Intestinal Pathology without a High Level of Viremia in Mice
Severe dengue virus (DENV)-associated diseases can occur in patients who have preexisting DENV antibodies (Abs) through antibody-dependent enhancement (ADE) of infection. It is well established that during ADE, DENV-antibody immune complexes (ICs) infect Fcγ receptor-bearing cells and increase the systemic viral burden that can be measured in the blood. For protection against infection with DENV serotypes 1 to 4, strongly neutralizing Abs must be elicited to overcome the effect of ADE. Clinical observations in infants who have maternal DENV Abs or recent phase II/III clinical trials with a leading tetravalent dengue vaccine suggested a lack of correlation between Ab neutralization and in vivo disease prevention. In addressing this gap in knowledge, we found that inoculation of ICs formed with serotype cross-reactive Abs that are more than 98% neutralized in vitro promotes high mortality in AG129 mice even though peak viremia was lower than that in direct virus infection. This suggests that the serum viremia level is not always correlated with disease severity. We further demonstrated that infection with the ICs resulted in increased vascular permeability, specifically in the small intestine, accompanied with increased tissue viral load and cytokine production, which can be suppressed by anti-tumor necrosis factor alpha (anti-TNF-α) Abs. Flow cytometric analysis identified increased infection in CD11b(int) CD11c(int/hi) CD103(−) antigen-presenting cells by IC inoculation, suggesting that these infected cells may be responsible for the increase in TNF-α production and vascular permeability in the small intestine that lead to mortality in mice. Our findings may have important implications for the development of dengue therapeutics. IMPORTANCE We examined the relationship between the neutralizing level of Abs at the time of infection and subsequent disease progression in a mouse model in order to understand why patients who are shown to have a neutralizing quantity of Abs still allow sufficient DENV replication to induce severe dengue manifestations, which sometimes do not correlate with viremia level. Strikingly, we found that high mortality was induced in AG129 mice by the increase in TNF-α-induced vascular permeability accompanied by an increased viral load, specifically in the small intestine, even when the initial infection level is suppressed to less than 5% and the peak viremia level is not enhanced. This suggests that ADE overcomes the protective efficacy of Abs in a tissue-dependent manner that leads to severe small intestinal pathology. Our findings may serve to address the pathogenic role of Abs on severe dengue disease and also help to develop safe Ab-based therapeutic strategies
Clinical whole-exome sequencing reveals a common pathogenic variant in patients with CoQ10 deficiency: An underdiagnosed cause of mitochondriopathy
[Background]: Primary CoQ deficiency occurs because of the defective biosynthesis of coenzyme Q, one of the key components of the mitochondrial electron transport chain. Patients with this disease present with a myriad of non-specific symptoms and signs, posing a diagnostic challenge. Whole-exome sequencing is vital in the diagnosis of these cases.[Case]: Three unrelated cases presenting as either encephalopathy or cardiomyopathy have been diagnosed to harbor a common pathogenic variant c.370G > A in COQ4. COQ4 encodes a key structural component for stabilizing the multienzymatic CoQ biosynthesis complex. This variant is detected only among East and South Asian populations.[Conclusions]: Based on the population data and our case series, COQ4-related mitochondriopathy is likely an underrecognized condition. We recommend including the COQ4 c.370G > A variant as a part of the screening process for mitochondriopathy in Chinese populations.This work was supported by the S.K. Yee Medical Foundation, Hong Kong
Dengue Virus Infection with Highly Neutralizing Levels of Cross-Reactive Antibodies Causes Acute Lethal Small Intestinal Pathology without a High Level of Viremia in Mice
Severe dengue virus (DENV)-associated diseases can occur in patients who have preexisting DENV antibodies (Abs) through antibody-dependent enhancement (ADE) of infection. It is well established that during ADE, DENV-antibody immune complexes (ICs) infect Fcγ receptor-bearing cells and increase the systemic viral burden that can be measured in the blood. For protection against infection with DENV serotypes 1 to 4, strongly neutralizing Abs must be elicited to overcome the effect of ADE. Clinical observations in infants who have maternal DENV Abs or recent phase II/III clinical trials with a leading tetravalent dengue vaccine suggested a lack of correlation between Ab neutralization and in vivo disease prevention. In addressing this gap in knowledge, we found that inoculation of ICs formed with serotype cross-reactive Abs that are more than 98% neutralized in vitro promotes high mortality in AG129 mice even though peak viremia was lower than that in direct virus infection. This suggests that the serum viremia level is not always correlated with disease severity. We further demonstrated that infection with the ICs resulted in increased vascular permeability, specifically in the small intestine, accompanied with increased tissue viral load and cytokine production, which can be suppressed by anti-tumor necrosis factor alpha (anti-TNF-α) Abs. Flow cytometric analysis identified increased infection in CD11b(int) CD11c(int/hi) CD103(−) antigen-presenting cells by IC inoculation, suggesting that these infected cells may be responsible for the increase in TNF-α production and vascular permeability in the small intestine that lead to mortality in mice. Our findings may have important implications for the development of dengue therapeutics. IMPORTANCE We examined the relationship between the neutralizing level of Abs at the time of infection and subsequent disease progression in a mouse model in order to understand why patients who are shown to have a neutralizing quantity of Abs still allow sufficient DENV replication to induce severe dengue manifestations, which sometimes do not correlate with viremia level. Strikingly, we found that high mortality was induced in AG129 mice by the increase in TNF-α-induced vascular permeability accompanied by an increased viral load, specifically in the small intestine, even when the initial infection level is suppressed to less than 5% and the peak viremia level is not enhanced. This suggests that ADE overcomes the protective efficacy of Abs in a tissue-dependent manner that leads to severe small intestinal pathology. Our findings may serve to address the pathogenic role of Abs on severe dengue disease and also help to develop safe Ab-based therapeutic strategies
Evaluation of an Automated High-Throughput Liquid-Based RNA Extraction Platform on Pooled Nasopharyngeal or Saliva Specimens for SARS-CoV-2 RT-PCR
SARS-CoV-2 RT-PCR with pooled specimens has been implemented during the COVID-19 pandemic as a cost- and manpower-saving strategy for large-scale testing. However, there is a paucity of data on the efficiency of different nucleic acid extraction platforms on pooled specimens. This study compared a novel automated high-throughput liquid-based RNA extraction (LRE) platform (PHASIFY™) with a widely used magnetic bead-based total nucleic acid extraction (MBTE) platform (NucliSENS® easyMAG®). A total of 60 pools of nasopharyngeal swab and 60 pools of posterior oropharyngeal saliva specimens, each consisting of 1 SARS-CoV-2 positive and 9 SARS-CoV-2 negative specimens, were included for the comparison. Real-time RT-PCR targeting the SARS-CoV-2 RdRp/Hel gene was performed, and GAPDH RT-PCR was used to detect RT-PCR inhibitors. No significant differences were observed in the Ct values and overall RT-PCR positive rates between LRE and MBTE platforms (92.5% (111/120] vs. 90% (108/120]), but there was a slightly higher positive rate for LRE (88.3% (53/60]) than MBTE (81.7% (49/60]) among pooled saliva. The automated LRE method is comparable to a standard MBTE method for the detection of SAR-CoV-2 in pooled specimens, providing a suitable alternative automated extraction platform. Furthermore, LRE may be better suited for pooled saliva specimens due to more efficient removal of RT-PCR inhibitors
Population-Wide Genetic Risk Prediction of Complex Diseases: A Pilot Feasibility Study in Macau Population for Precision Public Healthcare Planning
Abstract The genetic bases of many common diseases have been identified through genome-wide association studies in the past decade. However, the application of this approach on public healthcare planning has not been well established. Using Macau with population of around 650,000 as a basis, we conducted a pilot study to evaluate the feasibility of population genomic research and its potential on public health decisions. By performing genome-wide SNP genotyping of over a thousand Macau individuals, we evaluated the population genetic risk profiles of 47 non-communicable diseases and traits, as well as two traits associated with influenza infection. We found that for most of the diseases, the genetic risks of Macau population were different from those of Caucasian, but with similar profile with mainland Chinese. We also identified a panel of diseases that Macau population may have a high or elevated genetic risks. This pilot study showed that (1) population genomic study is feasible in Asian regions like Macau; (2) Macau may have different profile of population-based genetic risks than Caucasians, (3) the different prevalence of genetic risk profile indicates the importance of Asian-specific studies for Asian populations; and (4) the results generated may have an impact for going forward healthcare planning