1,450 research outputs found

    Using synchronism of chaos for adaptive learning of network topology

    Full text link
    In this paper we consider networks of dynamical systems that evolve in synchrony and investigate how dynamical information from the synchronization dynamics can be effectively used to learn the network topology, i.e., identify the time evolution of the couplings between the network nodes. To this aim, we present an adaptive strategy that, based on a potential that the network systems seek to minimize in order to maintain synchronization, can be successfully applied to identify the time evolution of the network from limited information. This strategy takes advantage of the properties of synchronism of chaos and of the presence of different communication delays over the network links. As a motivating example we consider a network of sensors surveying an area, in which information regarding the time evolution of the network connections can be used, e.g., to detect changes taking place within the area. We propose two different setups for our strategy. In the first one, synchronization has to be achieved at each node (as well as the identification of the couplings over the network links), based solely on a single scalar signal representing a superposition of signals from the other nodes in the network. In the second one, we incorporate an additional node, termed the maestro, having the function of maintaining network synchronization. We will see that when such an arrangement is realized, it will become possible to effectively identify the time evolution of networks that are much larger than would be possible in the absence of a maestro.Comment: 22 pages, 12 figures, accepted for publication on Physical Review

    Dynamical clustering in oscillator ensembles with time-dependent interactions

    Full text link
    We consider an ensemble of coupled oscillators whose individual states, in addition to the phase, are characterized by an internal variable with autonomous evolution. The time scale of this evolution is different for each oscillator, so that the ensemble is inhomogeneous with respect to the internal variable. Interactions between oscillators depend on this variable and thus vary with time. We show that as the inhomogeneity of time scales in the internal evolution grows, the system undergoes a critical transition between ordered and incoherent states. This transition is mediated by a regime of dynamical clustering, where the ensemble recurrently splits into groups formed by varying subpopulations.Comment: 4 pages, 3 figure

    Phase Synchronization and Polarization Ordering of Globally-Coupled Oscillators

    Get PDF
    We introduce a prototype model for globally-coupled oscillators in which each element is given an oscillation frequency and a preferential oscillation direction (polarization), both randomly distributed. We found two collective transitions: to phase synchronization and to polarization ordering. Introducing a global-phase and a polarization order parameters, we show that the transition to global-phase synchrony is found when the coupling overcomes a critical value and that polarization order enhancement can not take place before global-phase synchrony. We develop a self-consistent theory to determine both order parameters in good agreement with numerical results

    A normal form for excitable media

    Full text link
    We present a normal form for travelling waves in one-dimensional excitable media in form of a differential delay equation. The normal form is built around the well-known saddle-node bifurcation generically present in excitable media. Finite wavelength effects are captured by a delay. The normal form describes the behaviour of single pulses in a periodic domain and also the richer behaviour of wave trains. The normal form exhibits a symmetry preserving Hopf bifurcation which may coalesce with the saddle-node in a Bogdanov-Takens point, and a symmetry breaking spatially inhomogeneous pitchfork bifurcation. We verify the existence of these bifurcations in numerical simulations. The parameters of the normal form are determined and its predictions are tested against numerical simulations of partial differential equation models of excitable media with good agreement.Comment: 22 pages, accepted for publication in Chao

    Helicoidal instability of a scroll vortex in three-dimensional reaction-diffusion systems

    Full text link
    We study the dynamics of scroll vortices in excitable reaction-diffusion systems analytically and numerically. We demonstrate that intrinsic three-dimensional instability of a straight scroll leads to the formation of helicoidal structures. This behavior originates from the competition between the scroll curvature and unstable core dynamics. We show that the obtained instability persists even beyond the meander core instability of two-dimensional spiral wave.Comment: 4 pages, 5 figures, revte

    Chimera Ising Walls in Forced Nonlocally Coupled Oscillators

    Full text link
    Nonlocally coupled oscillator systems can exhibit an exotic spatiotemporal structure called chimera, where the system splits into two groups of oscillators with sharp boundaries, one of which is phase-locked and the other is phase-randomized. Two examples of the chimera states are known: the first one appears in a ring of phase oscillators, and the second one is associated with the two-dimensional rotating spiral waves. In this article, we report yet another example of the chimera state that is associated with the so-called Ising walls in one-dimensional spatially extended systems, which is exhibited by a nonlocally coupled complex Ginzburg-Landau equation with external forcing.Comment: 7 pages, 5 figures, to appear in Phys. Rev.

    Propagation of small perturbations in synchronized oscillator networks

    Full text link
    We study the propagation of a harmonic perturbation of small amplitude on a network of coupled identical phase oscillators prepared in a state of full synchronization. The perturbation is externally applied to a single oscillator, and is transmitted to the other oscillators through coupling. Numerical results and an approximate analytical treatment, valid for random and ordered networks, show that the response of each oscillator is a rather well-defined function of its distance from the oscillator where the external perturbation is applied. For small distances, the system behaves as a dissipative linear medium: the perturbation amplitude decreases exponentially with the distance, while propagating at constant speed. We suggest that the pattern of interactions may be deduced from measurements of the response of individual oscillators to perturbations applied at different nodes of the network

    Thermodynamic Analysis of Interacting Nucleic Acid Strands

    Get PDF
    Motivated by the analysis of natural and engineered DNA and RNA systems, we present the first algorithm for calculating the partition function of an unpseudoknotted complex of multiple interacting nucleic acid strands. This dynamic program is based on a rigorous extension of secondary structure models to the multistranded case, addressing representation and distinguishability issues that do not arise for single-stranded structures. We then derive the form of the partition function for a fixed volume containing a dilute solution of nucleic acid complexes. This expression can be evaluated explicitly for small numbers of strands, allowing the calculation of the equilibrium population distribution for each species of complex. Alternatively, for large systems (e.g., a test tube), we show that the unique complex concentrations corresponding to thermodynamic equilibrium can be obtained by solving a convex programming problem. Partition function and concentration information can then be used to calculate equilibrium base-pairing observables. The underlying physics and mathematical formulation of these problems lead to an interesting blend of approaches, including ideas from graph theory, group theory, dynamic programming, combinatorics, convex optimization, and Lagrange duality

    Method of remotely characterizing thermal properties of a sample

    Get PDF
    A sample in a wind tunnel is radiated from a thermal energy source outside of the wind tunnel. A thermal imager system, also located outside of the wind tunnel, reads surface radiations from the sample as a function of time. The produced thermal images are characteristic of the heat transferred from the sample to the flow across the sample. In turn, the measured rates of heat loss of the sample are characteristic of the flow and the sample
    • …
    corecore