39 research outputs found
Marine fish traits follow fast-slow continuum across oceans
A fundamental challenge in ecology is to understand why species are found where they are and predict
where they are likely to occur in the future. Trait-based approaches may provide such understanding,
because it is the traits and adaptations of species that determine which environments they can inhabit.
It is therefore important to identify key traits that determine species distributions and investigate
how these traits relate to the environment. Based on scientific bottom-trawl surveys of marine fish
abundances and traits of >1,200 species, we investigate trait-environment relationships and project
the trait composition of marine fish communities across the continental shelf seas of the Northern
hemisphere. We show that traits related to growth, maturation and lifespan respond most strongly to
the environment. This is reflected by a pronounced âfast-slow continuumâ of fish life-histories, revealing
that traits vary with temperature at large spatial scales, but also with depth and seasonality at more
local scales. Our findings provide insight into the structure of marine fish communities and suggest that
global warming will favour an expansion of fast-living species. Knowledge of the global and local drivers
of trait distributions can thus be used to predict future responses of fish communities to environmental
change.Postprint2,92
Female gamersâ experience of online harassment and social support in online gaming: a qualitative study
Female gaming is a relatively under-researched area, and female gamers often report experiencing harassment whilst playing online. The present study explored female experiences of social support while playing online video games, because of the previous research suggesting that females often experience harassment and negative interactions during game play. Data were collected from an online discussion forum, and comprised posts drawn from 271 female gamers. Thematic analysis of the discussions suggested that a lack of social support and harassment frequently led to female gamers playing alone, playing anonymously, and moving groups regularly. The female gamers reported experiencing anxiety and loneliness due to this lack of social support, and for many, this was mirrored in their experiences of social support outside of gaming. The female gamers frequently accepted the incorporation into their gaming of specific coping strategies to mitigate online harassment, including actively hiding their identity and avoiding all forms of verbal communication with other players. These themes are discussed in relation to relevant research in the area, along with recommendations for future research and consideration of possible explanations for the themes observed
Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations.
Understanding how biological and environmental factors interactively shape the global distribution of plant and animal genetic diversity is fundamental to biodiversity conservation. Genetic diversity measured in local populations (GDP) is correspondingly assumed representative for population fitness and eco-evolutionary dynamics. For 8356 populations across the globe, we report that plants systematically display much lower GDP than animals, and that life history traits shape GDP patterns both directly (animal longevity and size), and indirectly by mediating core-periphery patterns (animal fecundity and plant dispersal). Particularly in some plant groups, peripheral populations can sustain similar GDP as core populations, emphasizing their potential conservation value. We further find surprisingly weak support for general latitudinal GDP trends. Finally, contemporary rather than past climate contributes to the spatial distribution of GDP, suggesting that contemporary environmental changes affect global patterns of GDP. Our findings generate new perspectives for the conservation of genetic resources at worldwide and taxonomic-wide scales