1,202 research outputs found

    Uranium pollution of the Wonderfonteinspruit, 1997-2008 Part 1: Uranium toxicity, regional background and mining-related sources of uranium pollution

    Get PDF
    Even though mining-related uranium (U) pollution in the Wonderfonteinspruit (WFS) has been an ongoing concern since the mid-1960s, media attention has increased considerably recently, focusing on pollution-related health risks that unsettle the general public. In view of recent findings that U might be more toxic than previously thought, such concerns need to be addressed. This even more so as South Africa has embarked on a nuclear expansion programme aimed at, amongst others, extending mining and processing of U. This is Part 1 of a series of papers aimed at the quantification of the extent of U pollution in the WFS, in order to provide a factual base for subsequent risk assessments. This paper provides an overview of recent findings on U toxicity with specific reference to drinking water, together with a critical examination of related international and South African guidelines. Based on a brief description of the study area and the impacts of mining over the past decades, the origin of U from different auriferous ore bodies (reefs) is explored. Using secondary data on historic gold and U production in the West Rand and the Far West Rand, tailings deposits in the 2 goldfields are estimated to contain well over 100 000 tons of U constituting a large reservoir for ongoing future U pollution. Apart from tailings, underground water in contact with uraniferous reefs constitutes another major source of waterborne U pollution. This applies to water pumped from underground mine workings as part of the active de-watering of overlying karst aquifers as well as decanting water from flooded mine voids. The discharge of U-polluted water together with largely uncontrolled outflow of uraniferous seepage from tailings deposits are major sources of water pollution in the WFS catchment. Keywords: uranium, toxicity, gold mining, reefs, karst, de-watering, tailings, slimes dams, Wonderfonteinsprui

    Uranium pollution of the Wonderfonteinspruit, 1997-2008 Part 2: Uranium in water – concentrations, loads and associated risks

    Get PDF
    Uranium (U) pollution of the surface water and groundwater of the Wonderfonteinspruit (WFS) catchment caused by gold mining over more than a century has been an ongoing concern for several decades. Triggered by a recent increase in media attention, political pressure on governmental authorities has mounted to assess the associated health risks and implement appropriate mitigation measures. However, owing to the complexity of the catchment arising from the presence of a multitude of dischargers, a complex karst hydrology and large-scale modifications thereof by deep-level gold mining, most attempts to address the issue to date have been limited to uncoordinated ad hoc studies generally suffering from a lack of temporal and spatial representivity of the underlying data. Part 2 of a series of 2 papers aimed at quantifying the extent of mining-related U pollution in the WFS catchment, this paper addresses the pollution of surface water, groundwater, as well as mine effluent. Based on close to 3 400 measured U concentrations (mostly unpublished) of water samples gathered between 1997 and 2008, an overview of U levels and associated loads in the WFS catchment is provided. Results indicate that U levels in water resources of the whole catchment have increased markedly, even though U loads emitted by some large gold mines in the Far West Rand have been significantly reduced. A major contributing factor is highly polluted water decanting from the flooded mine void in the West Rand, which was diverted to the WFS. Over the reference period, an average of some 3.5 t of dissolved U has been released into the fluvial system from monitored discharge points alone. However, since the WFS dries up well before it joins the Mooi River this U load does not usually impact on the water supply system of downstream Potchefstroom directly. It may, however, indirectly reach Potchefstroom since much of the water from the WFS recharges the underlying karst aquifer of the Boskop Turffontein Compartment (BTC), the single most important water resource for Potchefstroom. Compared to 1997, groundwater in the BTC showed the highest relative increase in U levels of the whole WFS catchment, resulting in some 800 kg/a of U flowing into Boskop Dam, Potchefstroom’s main water reservoir. Of particular concern is the fact that U levels in the WFS are comparable to those detected in the Northern Cape (South Africa), which have been linked geostatistically to abnormal haematological values related to increased incidences of leukaemia observed in residents of the area. Keywords: uranium, water pollution, load, deep level gold mining, karst, dolomite, risks, leukaemia, Wonderfonteinspruit, West Rand, Far West Ran

    Distribution of particles which produces a "smart" material

    Get PDF
    If Aq(β,α,k)A_q(\beta, \alpha, k) is the scattering amplitude, corresponding to a potential q∈L2(D)q\in L^2(D), where D⊂R3D\subset\R^3 is a bounded domain, and eikα⋅xe^{ik\alpha \cdot x} is the incident plane wave, then we call the radiation pattern the function A(β):=Aq(β,α,k)A(\beta):=A_q(\beta, \alpha, k), where the unit vector α\alpha, the incident direction, is fixed, and k>0k>0, the wavenumber, is fixed. It is shown that any function f(β)∈L2(S2)f(\beta)\in L^2(S^2), where S2S^2 is the unit sphere in R3\R^3, can be approximated with any desired accuracy by a radiation pattern: ∣∣f(β)−A(β)∣∣L2(S2)<ϵ||f(\beta)-A(\beta)||_{L^2(S^2)}<\epsilon, where ϵ>0\epsilon>0 is an arbitrary small fixed number. The potential qq, corresponding to A(β)A(\beta), depends on ff and ϵ\epsilon, and can be calculated analytically. There is a one-to-one correspondence between the above potential and the density of the number of small acoustically soft particles Dm⊂DD_m\subset D, 1≤m≤M1\leq m\leq M, distributed in an a priori given bounded domain D⊂R3D\subset\R^3. The geometrical shape of a small particle DmD_m is arbitrary, the boundary SmS_m of DmD_m is Lipschitz uniformly with respect to mm. The wave number kk and the direction α\alpha of the incident upon DD plane wave are fixed.It is shown that a suitable distribution of the above particles in DD can produce the scattering amplitude A(α′,α)A(\alpha',\alpha), α′,α∈S2\alpha',\alpha\in S^2, at a fixed k>0k>0, arbitrarily close in the norm of L2(S2×S2)L^2(S^2\times S^2) to an arbitrary given scattering amplitude f(α′,α)f(\alpha',\alpha), corresponding to a real-valued potential q∈L2(D)q\in L^2(D).Comment: corrected typo

    Gold tailings as a source of waterborne uranium contamination of streams - the Koekemoerspruit (Klerksdorp goldfield, South Africa) as a case study - part I of III: uranium migration along the aqueous pathway

    Get PDF
    Tailings deposits from gold and uranium (U) mining in the Witwatersrand basin often contain elevated levels of radioactive and chemo-toxic heavy metals. Through seepage, dissolved U and other metals migrate from tailings deposits via groundwater into adjacent fluvial systems. The subsequent transport through flowing surface water is one of the most effective pathways of distributing contaminants throughout the biosphere. Mechanisms of diffuse stream contamination, as well as the aqueous transportation of U were investigated. In this paper, geochemical data of water and sediment samples from the Koekemoerspruit (a typical example of a stream affected by gold and U mining in South Africa) are analysed with regards to possible transport and immobilisation mechanisms of U migrating in solution. Ratios between dissolved and solid phases of U for various water-sediment-systems along the aqueous pathway indicated, unexpectedly, significantly lower mobility of U in flowing surface water than in the groundwater system of the floodplain. Correlation of various geochemical parameters suggests co-precipitation of U along with calcium carbonate and iron/ manganese-compounds as the main reason for the higher immobilisation rate in the flowing water systems. Owing to redoxinitiated precipitation at the interface of reducing groundwater and oxygenated stream water within the bottom sediments, the latter act as a sink and geochemical barrier for U from groundwater sources. The low retention of U in the highly sorptive floodplain sediments on the other hand is explained by the formation of neutral uranyl-sulphate-complexes, which prevent the positively charged U ion from adsorbing onto negative surfaces of clay minerals and organic substances in the floodplain. Evidence for such complexes are sulphate crusts with extremely high U concentrations, which form on topsoil due to capillary fringe effects in dry periods. Due to their high solubility, these crusts are easily dissolved by rain, resulting in concentration peaks of dissolved U in surface runoff. WaterSA Vol.30 (2) 2004: 219-22

    Control de gestión en interfaces culturales. Una exploración en torno al impacto de la cultura en el control de gestión en Argentina y Alemania

    Get PDF
    Fil: Winde, Maxi. Universidad Católica de Córdoba. Instituto de Ciencias de la Administración; Argentin
    • …
    corecore