100 research outputs found

    Efficient detection of RNA–protein interactions using tethered RNAs

    Get PDF
    The diverse localization of transcripts in cells suggests that there are many specific RNA–protein interactions that have yet to be identified. Progress has been limited, however, by the lack of a robust method to detect and isolate the RNA-binding proteins. Here we describe the use of an RNA aptamer, scaffolded to a tRNA, to create an affinity matrix that efficiently pulls down transcript-specific RNA-binding proteins from cell lysates. The addition of the tRNA scaffold to a Streptavidin aptamer (tRSA) increased binding efficiency by ∼10-fold. The tRSA system with an attached G-quartet sequence also could efficiently and specifically capture endogenous Fragile X Mental Retardation Protein (FMRP), which recognizes this RNA sequence. An alternative method, using biotinylated RNA, captured FMRP less efficiently than did our tRSA method. Finally we demonstrate the identification of novel RNA-binding proteins that interact with intron2 or 3′-UTR of the polarity protein Crumbs3 transcript. Proteins captured by these RNA sequences attached to the tRNA scaffold were identified by mass spectrometry. GFP-tagged versions of these proteins also showed specific interaction with either the Crb3 intron2 or 3′-UTR. Our tRSA technique should find wide application in mapping the RNA–protein interactome

    Interferon-gamma in the first-line therapy of ovarian cancer: a randomized phase III trial

    Get PDF
    Intraperitoneal treatment with interferon-γ (IFN-γ) has been shown to achieve surgically documented responses in the second-line therapy of ovarian cancer. To assess its efficacy in the first-line therapy, we conducted a randomized controlled trial with 148 patients who had undergone primary surgery for FIGO stage Ic–IIIc ovarian cancer. In the control arm women received 100 mg m−2cisplatin and 600 mg m−2cyclophosphamide, the experimental arm included the above regimen with IFN-γ 0.1 mg subcutaneously on days 1, 3, 5, 15, 17 and 19 of each 28-day cycle. Progression-free survival at 3 years was improved from 38% in controls to 51% in the treatment group corresponding to median times to progression of 17 and 48 months (P = 0.031, relative risk of progression 0.48, confidence interval 0.28–0.82). Three-year overall survival was 58% and 74% accordingly (n.s., median not yet reached). Complete clinical responses were observed in 68% with IFN-γ versus 56% in controls (n.s.). Toxicity was comparable in both groups except for a mild flu-like syndrome, experienced by most patients after administration of IFN-γ. Thus, with acceptable toxicity, the inclusion of IFN-γ in the first-line chemotherapy of ovarian cancer yielded a benefit in prolonging progression-free survival. © 2000 Cancer Research Campaig

    Midgut microbiota of the malaria mosquito vector Anopheles gambiae and Interactions with plasmodium falciparum Infection

    Get PDF
    The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.Institut de Recherche pour le Developpement (IRD); French Agence Nationale pour la Recherche [ANR-11-BSV7-009-01]; European Community [242095, 223601]info:eu-repo/semantics/publishedVersio

    A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae.

    Get PDF
    Gene drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years. We describe CRISPR-Cas9 endonuclease constructs that function as gene drive systems in Anopheles gambiae, the main vector for malaria. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female-sterility phenotype upon disruption, and inserted into each locus CRISPR-Cas9 gene drive constructs designed to target and edit each gene. For each targeted locus we observed a strong gene drive at the molecular level, with transmission rates to progeny of 91.4 to 99.6%. Population modeling and cage experiments indicate that a CRISPR-Cas9 construct targeting one of these loci, AGAP007280, meets the minimum requirement for a gene drive targeting female reproduction in an insect population. These findings could expedite the development of gene drives to suppress mosquito populations to levels that do not support malaria transmission

    Resistance to natural and synthetic gene drive systems

    Get PDF
    Scientists are rapidly developing synthetic gene drive elements intended for release into natural populations. These are intended to control or eradicate disease vectors and pests, or to spread useful traits through wild populations for disease control or conservation purposes. However, a crucial problem for gene drives is the evolution of resistance against them, preventing their spread. Understanding the mechanisms by which populations might evolve resistance is essential for engineering effective gene drive systems. This review summarizes our current knowledge of drive resistance in both natural and synthetic gene drives. We explore how insights from naturally occurring and synthetic drive systems can be integrated to improve the design of gene drives, better predict the outcome of releases and understand genomic conflict in general

    Maintenance treatment with interferon for advanced ovarian cancer: results of the Northern and Yorkshire gynaecology group randomised phase III study

    Get PDF
    A randomised phase III trial was conducted to assess the role of interferon-alpha (INFα) 2a as maintenance therapy following surgery and/or chemotherapy in patients with epithelial ovarian carcinoma. Patients were randomised following initial surgery/chemotherapy to interferon-alpha 2a as 4.5 mega-units subcutaneously 3 days per week or to no further treatment. A total of 300 patients were randomised within the study between February 1990 and July 1997. No benefit for interferon maintenance was seen in terms of either overall or clinical event-free survival. We conclude that INF-α is not effective as a maintenance therapy in the management of women with ovarian cancer. The need for novel therapeutics or strategies to prevent the almost inevitable relapse of patients despite increasingly effective surgery and chemotherapy remains

    A chromosomal reference genome sequence for the malaria mosquito Anopheles gambiae, Giles, 1902, Ifakara strain

    Get PDF
    We present a genome assembly from an individual female Anopheles gambiae (the malaria mosquito; Arthropoda; Insecta; Diptera; Culicidae), Ifakara strain. The genome sequence is 264 megabases in span. Most of the assembly is scaffolded into three chromosomal pseudomolecules with the X sex chromosome assembled. The complete mitochondrial genome was also assembled and is 15.4 kilobases in length
    corecore