1,949 research outputs found

    A Spectroscopic and Photometric Study of the Metal-Poor, Pulsating, Post-AGB Binary HD 46703

    Full text link
    The metal-poor post-AGB star HD 46703 is shown to be a single-line spectroscopic binary with a period of 600 days, a high velocity of -94 km/s, and an orbital eccentricity of 0.3. Light curve studies show that it also pulsates with a period of 29 days. High-resolution, high signal-to-noise spectra were used for a new abundance study. The atmospheric model determined is T(eff) = 6250 K, log(g) = 1.0, V(t) = 3.0 km/s, and a metal abundance of [M/H] = -1.5. A low carbon abundance and lack of s-process element enhancement indicate that the star has not experienced third dredge-up on the AGB. The sulfur and zinc abundances are high compared with iron, and the chemical abundances show a clear anti-correlation with condensation temperature. The abundance depletion pattern is similar to that seen in other post-AGB binaries, and, like them, is attributed to the chemical fractionation of refractory elements onto dust stored in a circumbinary disk and the re-accretion of volatiles in the stellar atmosphere. The infrared excess is small but the excess energy distribution is very similar to what can expected from a disk. HD 46703 joins the growing list of depleted, post-AGB stars which are likely surrounded by a dusty and stable circumbinary disk.Comment: Machine readable files not include

    HD172481: a super lithium-rich metal-deficient post-AGB binary with a red AGB companion

    Get PDF
    We present in this paper a study on the peculiar supergiant HD172481. Its spectral type (F2Ia), high galactic latitude (b=-10.37), circumstellar dust, high radial velocity and moderate metal deficiency ([Fe/H]=-0.55) confirm the post-AGB character of this object. A detailed chemical analysis shows slight but real s-process overabundances, however no CNO-enhancement was detected. Furthermore, the spectral energy distribution and the TiO bands in the red part of the spectrum reveal a red luminous companion. The luminosity ratio of the hot F type component and this cool M type companion L(F)/L(M) is derived for a reddening of E(B-V)=0.44 (L(F)/L(M)=1.8) and indicates that the companion must also be strongly evolved and probably evolving along the AGB. Neither our photometric data-set, nor our radial velocity monitoring show evidence for orbital variability which may indicate that the period is too large for direct binary interaction. Most interestingly, a strong lithium resonance line is detected, which yields an abundance of log(Li)=3.6. Several explanations for this large lithium content are explored.Comment: 11 pages, 9 figures, accepted for publication in Astronomy and Astrophysic

    Monitoring evolved stars for binarity with the HERMES spectrograph

    Full text link
    Binarity is often invoked to explain peculiarities that can not be explained by the standard theory of stellar evolution. Detecting orbital motion via the Doppler effect is the best method to test binarity when direct imaging is not possible. However, when the orbital period exceeds the duration of a typical observing run, monitoring often becomes problematic. Placing a high-throughput spectrograph on a small semi- robotic telescope allowed us to carry out a radial-velocity survey of various types of peculiar evolved stars. In this review we highlight some findings after the first four years of observations. Thus, we detect eccentric binaries among hot subdwarfs, barium, S stars, and post- AGB stars with disks, which are not predicted by the standard binary interaction theory. In disk objects, in addition, we find signs of the on- going mass transfer to the companion, and an intriguing line splitting, which we attribute to the scattered light of the primary.Comment: To appear in the proceedings of the conference "Setting a new standard in the analysis of binary stars", A. Tkachenko (ed.), European Astron. Soc. Publ. Se

    IRAS\,11472-0800: an extremely depleted pulsating binary post-AGB star

    Full text link
    We focus here on one particular and poorly studied object, IRAS11472-0800. It is a highly evolved post-Asymptotic Giant Branch (post-AGB) star of spectral type F, with a large infrared excess produced by thermal emission of circumstellar dust. We deploy a multi-wavelength study which includes the analyses of optical and IR spectra as well as a variability study based on photometric and spectroscopic time-series. The spectral energy distribution (SED) properties as well as the highly processed silicate N-band emission show that the dust in IRAS11472-0800 is likely trapped in a stable disc. The energetics of the SED and the colour variability show that our viewing angle is close to edge-on and that the optical flux is dominated by scattered light. With photospheric abundances of [Fe/H] = -2.7 and [Sc/H]=-4.2, we discovered that IRAS11472-0800 is one of the most chemically-depleted objects known to date. Moreover, IRAS11472-0800 is a pulsating star with a period of 31.16 days and a peak-to-peak amplitude of 0.6 mag in V. The radial velocity variability is strongly influenced by the pulsations, but the significant cycle-to-cycle variability is systematic on a longer time scale, which we interpret as evidence for binary motion. We conclude that IRAS11472-0800 is a pulsating binary star surrounded by a circumbinary disc. The line-of-sight towards the object lies close the the orbital plane making that the optical light is dominated by scattered light. IRAS11472-0800 is one of the most chemically-depleted objects known so far and links the dusty RV\,Tauri stars to the non-pulsating class of strongly depleted objects.Comment: 12 pages, 14 figures Accepted for publication in A&A Main Journa

    A study of the s-process in the carbon-rich post-AGB stars IRAS06530-0213 and IRAS08143-4406 on the basis of VLT-UVES spectra

    Full text link
    In an effort to extend the still limited sample of s-process enriched post-AGB stars, high-resolution, high signal-to-noise VLT+UVES spectra of the optical counterparts of the infrared sources IRAS06530-0213 and IRAS08143-4406 were analysed. The objects are moderately metal deficient by [Fe/H]=-0.5 and -0.4 respectively, carbon-rich and, above all, heavily s-process enhanced with a [ls/Fe] of 1.8 and 1.5 respectively. Especially the spectrum of IRAS06530-0213 is dominated by transitions of s-process species, and therefore resembling the spectrum of IRAS05341+0852, the most s-process enriched object known so far. The two objects are chemically very similar to the 21micron objects discussed in Van Winckel & Reyniers (2000). A homogeneous comparison with the results of these objects reveals that the relation between the third dredge-up efficiency and the neutron nucleosynthesis efficiency found for the 21micron objects, is further strengthened. On the other hand, a detailed comparison with the predictions of the latest AGB models indicates that the observed spread in nucleosynthesis efficiency is certainly intrinsic, and proves that different C-13 pockets are needed for stars with comparable mass and metallicity to explain their abundances.Comment: 14 pages, 10 figures, accepted for publication in A&A; Table 4 is available at ftp://ftp.ster.kuleuven.ac.be/dist/maarten/filescds/ pending upload to CD
    corecore