496 research outputs found

    Disparity among low first ionization potential elements

    Full text link
    The elemental composition of the solar wind differs from the solar photospheric composition. Elements with low first ionization potential (FIP) appear enhanced compared to O in the solar wind relative to the respective photospheric abundances. This so-called FIP effect is different in the slow solar wind and the coronal hole wind. However, under the same plasma conditions, for elements with similar FIPs such as Mg, Si, and Fe, comparable enhancements are expected. We scrutinize the assumption that the FIP effect is always similar for different low FIP elements, namely Mg, Si, and Fe. We investigate the dependency of the FIP effect of low FIP elements on the O7+/O6+ charge state ratio depending on time and solar wind type. We order the observed FIP ratios with respect to the O7+/O6+ charge state ratio into bins and analyze separately the respective distributions of the FIP ratio of Mg, Si, and Fe for each O7+/O6+ charge state ratio bin. We observe that the FIP effect shows the same qualitative yearly behavior for Mg and Si, while Fe shows significant differences during the solar activity maximum and its declining phase. In each year, the FIP effect for Mg and Si always increases with increasing O7+/O6+ charge state ratio, but for high O7+/O6+ charge state ratios the FIP effect for Fe shows a qualitatively different behavior. During the years 2001-2006, instead of increasing with the O7+/O6+ charge state ratio, the Fe FIP ratio exhibits a broad peak. Also, the FIP distribution per O7+/O6+ charge state bin is significantly broader for Fe than for Mg and Si. These observations support the conclusion that the elemental fractionation is only partly determined by FIP. In particular, the qualitative difference behavior with increasing O7+/O6+ charge state ratio between Fe on the one hand and Mg and Si on the other hand is not yet well explained by models of fractionation

    An elliptic expansion of the potential field source surface model

    Full text link
    Context. The potential field source surface model is frequently used as a basis for further scientific investigations where a comprehensive coronal magnetic field is of importance. Its parameters, especially the position and shape of the source surface, are crucial for the interpretation of the state of the interplanetary medium. Improvements have been suggested that introduce one or more additional free parameters to the model, for example, the current sheet source surface (CSSS) model. Aims. Relaxing the spherical constraint of the source surface and allowing it to be elliptical gives modelers the option of deforming it to more accurately match the physical environment of the specific period or location to be analyzed. Methods. A numerical solver is presented that solves Laplace's equation on a three-dimensional grid using finite differences. The solver is capable of working on structured spherical grids that can be deformed to create elliptical source surfaces. Results. The configurations of the coronal magnetic field are presented using this new solver. Three-dimensional renderings are complemented by Carrington-like synoptic maps of the magnetic configuration at different heights in the solar corona. Differences in the magnetic configuration computed by the spherical and elliptical models are illustrated.Comment: 11 pages, 7 figure

    Evolution of an equatorial coronal hole structure and the released coronal hole wind stream: Carrington rotations 2039 to 2050

    Full text link
    The Sun is a highly dynamic environment that exhibits dynamic behavior on many different timescales. In particular, coronal holes exhibit temporal and spatial variability. Signatures of these coronal dynamics are inherited by the coronal hole wind streams that originate in these regions and can effect the Earth's magnetosphere. Both the cause of the observed variabilities and how these translate to fluctuations in the in situ observed solar wind is not yet fully understood. During solar activity minimum the structure of the magnetic field typically remains stable over several Carrington rotations (CRs). But how stable is the solar magnetic field? Here, we address this question by analyzing the evolution of a coronal hole structure and the corresponding coronal hole wind stream emitted from this source region over 12 consecutive CRs in 2006. To this end, we link in situ observations of Solar Wind Ion Composition Spectrometer (SWICS) onboard the Advanced Composition Explorer (ACE) with synoptic maps of Michelson Doppler imager (MDI) on the Solar and Heliospheric Observatory (SOHO) at the photospheric level through a combination of ballistic back-mapping and a potential field source surface (PFSS) approach. Together, these track the evolution of the open field line region that is identified as the source region of a recurring coronal hole wind stream. We find that the shape of the open field line region and to some extent also the solar wind properties are influenced by surrounding more dynamic closed loop regions. We show that the freeze-in order can change within a coronal hole wind stream on small timescales and illustrate a mechanism that can cause changes in the freeze-in order. The inferred minimal temperature profile is variable even within coronal hole wind and is in particular most variable in the outer corona

    An easy-to-use function to assess deep space radiation in human brains

    Get PDF
    Health risks from radiation exposure in space are an important factor for astronauts' safety as they venture on long-duration missions to the Moon or Mars. It is important to assess the radiation level inside the human brain to evaluate the possible hazardous effects on the central nervous system especially during solar energetic particle (SEP) events. We use a realistic model of the head/brain structure and calculate the radiation deposit therein by realistic SEP events, also under various shielding scenarios. We then determine the relation between the radiation dose deposited in different parts of the brain and the properties of the SEP events and obtain some simple and ready-to-use functions which can be used to quickly and reliably forecast the event dose in the brain. Such a novel tool can be used from fast nowcasting of the consequences of SEP events to optimization of shielding systems and other mitigation strategies of astronauts in space

    Possible in situ Tests of the Evolution of Elemental and Isotopic Abundances in the Solar Convection Zone

    Full text link
    Helioseismology has shown that the chemical composition of the Sun has changed over its lifetime. The surface abundance of helium and heavy elements is believed to have decreased by up to 10% relative to their initial values. However, this reduction is too small to be tested by direct observations of the photospheric chemical composition. Here, we compare the predicted variations in the solar photospheric composition with precise measurements of abundances in meteorites and the solar wind composition. Although elemental composition ratios can vary by roughly a percent (e. g. for Ca/Mg and Ca/Fe) over the Sun's lifetime, their measurements are rife with uncertainties related to uncertainties in the interpretation of meteoritic measurements, photospheric determinations, and the complex fractionation processes occurring between the upper photosphere and lower chromosphere and the corona. On the other hand, isotopic ratios can be measured much more accurately and are not expected to be affected as much by extrasolar processes, although more work is required to quantify their effect. As the isotopic ratios evolve in the Sun proportionally to the mass ratios of the isotopes, light elements yield the highest variations in isotopic ratios. They are predicted to reach as high as 0.6% for 18^{18}O/16^{16}O and are only slightly lower in the cases of 26^{26}Mg/24^{24}Mg and 30^{30}Si/28^{28}Si. Such a value should be well within the sensitivity of new missions such as Genesis.Comment: 10 pages, 6 figures, accepted for publication in Journal of geophysical Research-Space Physic

    Scope and limitations of ad hoc neural network reconstructions of solar wind parameters

    Full text link
    Solar wind properties are determined by the conditions of their solar source region and transport history. Solar wind parameters, such as proton speed, proton density, proton temperature, magnetic field strength, and the charge state composition of oxygen, are used as proxies to investigate the solar source region of the solar wind. The transport and conditions in the solar source region affect several solar wind parameters simultaneously. The observed redundancy could be caused by a set of hidden variables. We test this assumption by determining how well a function of four of the selected solar wind parameters can model the fifth solar wind parameter. If such a function provided a perfect model, then this solar wind parameter would be uniquely determined from hidden variables of the other four parameters. We used a neural network as a function approximator to model unknown relations between the considered solar wind parameters. This approach is applied to solar wind data from the Advanced Composition Explorer (ACE). The neural network reconstructions are evaluated in comparison to observations. Within the limits defined by the measurement uncertainties, the proton density and proton temperature can be reconstructed well. We also found that the reconstruction is most difficult for solar wind streams preceding and following stream interfaces. For all considered solar wind parameters, but in particular the proton density, temperature, and the oxygen charge-state ratio, parameter reconstruction is hindered by measurement uncertainties. The reconstruction accuracy of sector reversal plasma is noticeably lower than that of streamer belt or coronal hole plasma. The fact that the oxygen charge-state ratio, a non-transport-affected property, is difficult to reconstruct may imply that recovering source-specific information from the transport-affected proton plasma properties is challenging

    A generalized approach to model the spectra and radiation dose rate of solar particle events on the surface of Mars

    Get PDF
    For future human missions to Mars, it is important to study the surface radiation environment during extreme and elevated conditions. In the long term, it is mainly Galactic Cosmic Rays (GCRs) modulated by solar activity that contributes to the radiation on the surface of Mars, but intense solar energetic particle (SEP) events may induce acute health effects. Such events may enhance the radiation level significantly and should be detected as immediately as possible to prevent severe damage to humans and equipment. However, the energetic particle environment on the Martian surface is significantly different from that in deep space due to the influence of the Martian atmosphere. Depending on the intensity and shape of the original solar particle spectra as well as particle types, the surface spectra may induce entirely different radiation effects. In order to give immediate and accurate alerts while avoiding unnecessary ones, it is important to model and well understand the atmospheric effect on the incoming SEPs including both protons and helium ions. In this paper, we have developed a generalized approach to quickly model the surface response of any given incoming proton/helium ion spectra and have applied it to a set of historical large solar events thus providing insights into the possible variety of surface radiation environments that may be induced during SEP events. Based on the statistical study of more than 30 significant solar events, we have obtained an empirical model for estimating the surface dose rate directly from the intensities of a power-law SEP spectra

    Ready functions for calculating the Martian radiation environment

    Get PDF
    It is extremely important to understand and model the Martian radiation environment in preparation for future human missions to Mars, especially during extreme and elevated conditions such as an intense solar energetic particle (SEP) event. Such events may enhance the radiation level drastically and should be forecasted as soon as possible to prevent severe damage to humans and equipment. Besides, the omnipresent galactic cosmic rays (GCRs) also contribute significantly to the radiation in space and on the surface of Mars and may cause long-term damages to current and future missions. Based on GEANT4 Monte Carlo simulations with the Martian atmospheric and regolith environment setup, we have calculated and obtained some ready-to-go functions which can be used to quickly convert any given SEP or GCR proton/helium ion spectra to the radiation dose on the surface of Mars and also at different depth of the atmosphere. We implement these functions to the RADMAREE tool under the Europlanet project which can be easily accessed by the public
    • …
    corecore