3,048 research outputs found

    Book Reviews

    Get PDF

    Design, simulation, and characterization of a radial opposed migration ion and aerosol classifier (ROMIAC)

    Get PDF
    We present the design, simulation, and characterization of the radial opposed migration ion and aerosol classifier (ROMIAC), a compact differential electrical mobility classifier. We evaluate the performance of the ROMIAC using a combination of finite element modeling and experimental validation of two nearly identical instruments using tetra-alkyl ammonium halide mass standards and sodium chloride particles. Mobility and efficiency calibrations were performed over a wide range of particle diameters and flow rates to characterize ROMIAC performance under the range of anticipated operating conditions. The ROMIAC performs as designed, though performance deviates from that predicted using simplistic models of the instrument. The underlying causes of this non-ideal behavior are found through finite element simulations that predict the performance of the ROMIAC with greater accuracy than the simplistic models. It is concluded that analytical performance models based on idealized geometries, flows, and fields should not be relied on to make accurate a priori predictions about instrumental behavior if the actual geometry or fields deviate from the ideal assumptions. However, if such deviations are accurately captured, finite element simulations have the potential to predict instrumental performance. The present prototype of the ROMIAC maintains its resolution over nearly three orders of magnitude in particle mobility, obtaining sub-20 nm particle size distributions in a compact package with relatively low flow rate operation requirements

    A First Comparison of the responses of a He4-based fast-neutron detector and a NE-213 liquid-scintillator reference detector

    Get PDF
    A first comparison has been made between the pulse-shape discrimination characteristics of a novel 4^{4}He-based pressurized scintillation detector and a NE-213 liquid-scintillator reference detector using an Am/Be mixed-field neutron and gamma-ray source and a high-resolution scintillation-pulse digitizer. In particular, the capabilities of the two fast neutron detectors to discriminate between neutrons and gamma-rays were investigated. The NE-213 liquid-scintillator reference cell produced a wide range of scintillation-light yields in response to the gamma-ray field of the source. In stark contrast, due to the size and pressure of the 4^{4}He gas volume, the 4^{4}He-based detector registered a maximum scintillation-light yield of 750~keVee_{ee} to the same gamma-ray field. Pulse-shape discrimination for particles with scintillation-light yields of more than 750~keVee_{ee} was excellent in the case of the 4^{4}He-based detector. Above 750~keVee_{ee} its signal was unambiguously neutron, enabling particle identification based entirely upon the amount of scintillation light produced.Comment: 23 pages, 7 figures, Nuclear Instruments and Methods in Physics Research Section A review addresse

    Charge Transfer Properties Through Graphene Layers in Gas Detectors

    Full text link
    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.Comment: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference with the 21st Symposium on Room-Temperature Semiconductor X-Ray and Gamma-Ray Detectors, 4 pages, 8 figure

    Gold nanomaterials functionalised with gadolinium chelates and their application in multimodal imaging and therapy

    Get PDF
    Over the last decade, much work has been dedicated to improving the performance of gadolinium-based magnetic resonance imaging (MRI) contrast agents by tethering them to biocompatible gold nanoparticles. The enhancement in performance (measured in terms of ‘relaxivity’) stems from the restriction in motion experienced by the gadolinium chelates on being attached to the gold nanoparticle surface. More recently, the unique properties of gold nanoparticles have been exploited to create very promising tools for multimodal imaging and MRI-guided therapies. This review addresses the progress made in the design of gadolinium-functionalised gold nanoparticles for use in MRI, multimodal imaging and theranostics. It also seeks to connect the chemical properties of these assemblies with potential application in the clinic

    Ion Mobility-Mass Spectrometry with a Radial Opposed Migration Ion and Aerosol Classifier (ROMIAC)

    Get PDF
    The first application of a novel differential mobility analyzer, the radial opposed migration ion and aerosol classifier (ROMIAC), is demonstrated. The ROMIAC uses antiparallel forces from an electric field and a cross-flow gas to both scan ion mobilities and continuously transmit target mobility ions with 100% duty cycle. In the ROMIAC, diffusive losses are minimized, and resolution of ions, with collisional cross-sections of 200–2000 Å^2, is achieved near the nondispersive resolution of ~20. Higher resolution is theoretically possible with greater cross-flow rates. The ROMIAC was coupled to a linear trap quadrupole mass spectrometer and used to classify electrosprayed C2–C12 tetra-alkyl ammonium ions, bradykinin, angiotensin I, angiotensin II, bovine ubiquitin, and two pairs of model peptide isomers. Instrument and mobility calibrations of the ROMIAC show that it exhibits linear responses to changes in electrode potential, making the ROMIAC suitable for mobility and cross-section measurements. The high resolution of the ROMIAC facilitates separation of isobaric isomeric peptides. Monitoring distinct dissociation pathways associated with peptide isomers fully resolves overlapping peaks in the ion mobility data. The ability of the ROMIAC to operate at atmospheric pressure and serve as a front-end analyzer to continuously transmit ions with a particular mobility facilitates extensive studies of target molecules using a variety of mass spectrometric methods

    Direct determination of the spiral pattern rotation speed of the Galaxy

    Full text link
    The rotation velocity of the spiral pattern of the Galaxy is determined by direct observation of the birthplaces of open clusters of stars in the galactic disk as a function of their age. Our measurement does not depend on any specific model of the spiral structure, like the existence of a given number of spiral arms, or the presence of a bar in the central regions. This study became possible due to the recent completion of a large database on open clusters by our group. The birthplaces of the clusters are determined by two methods, one that assumes that the orbits are circular, and the other by integrating the orbits in the Galactic potential for a time equal to the age of the clusters. We selected in the database a sample of 212 clusters for which proper motions, radial velocities, distances and ages are available, or of 612 clusters that have ages and distances available. We tested different assumptions concerning the rotation curve and the radius R0R_0 of the solar orbit. Our results confirm that a dominant fraction of the open clusters are formed in spiral arms, and that the spiral arms rotate like a rigid body, as predicted by the classical theory of spiral waves. We find that the corotation radius RcR_c is close to the solar galactic orbit (Rc/R0=1.08±0.08R_c/R_0 = 1.08 \pm 0.08). This proximity has many potentially interesting consequences, like a better preservation of life on the Earth, and a new understanding of the history of star formation in the solar neighborhood, and of the evolution of the abundance of elements in the galactic disk.Comment: 9 pages, 5 figures, submitted to Ap

    A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change

    Get PDF
    Iceberg calving is a major component of the total mass balance of the Greenland ice sheet (GrIS). A century-long record of Greenland icebergs comes from the International Ice Patrol's record of icebergs (I48N) passing latitude 48° N, off Newfoundland. I48N exhibits strong interannual variability, with a significant increase in amplitude over recent decades. In this study, we show, through a combination of nonlinear system identification and coupled ocean-iceberg modelling, that I48N's variability is predominantly caused by fluctuation in GrIS calving discharge rather than open ocean iceberg melting. We also demonstrate that the episodic variation in iceberg discharge is strongly linked to a nonlinear combination of recent changes in the surface mass balance (SMB) of the GrIS and regional atmospheric and oceanic climate variability, on the scale of the previous 1-3 years, with the dominant causal mechanism shifting between glaciological (SMB) and climatic (ocean temperature) over time. We suggest that this is a change in whether glacial run-off or under-ice melting is dominant, respectively. We also suggest that GrIS calving discharge is episodic on at least a regional scale and has recently been increasing significantly, largely as a result of west Greenland sources. © 2014 The Author(s) Published by the Royal Society. All rights reserved
    • …
    corecore