1,037 research outputs found

    Baryonic contributions to the dilepton spectrum of nucleon-nucleon collisions

    Full text link
    We study the production of dileptons in relativistic nucleon-nucleon collisions. Additionally to the traditional dilepton production channels (vector meson decays, meson and Delta(1232) Dalitz decays) we included in our model as new dilepton sources the Dalitz decay of higher unflavored baryon resonances with spin<=5/2 and mass<=2.25 GeV/c^2. The contributions of these new channels are estimated using experimental information about the Ngamma decays of the resonances and have large uncertainties. The obtained dilepton spectra are compared to the experimental data by the DLS collaboration. Predictions for the HADES detector (SIS, GSI) are also discussed. In spite of the large uncertainties of the higher resonance Dalitz decay contributions we are able to draw the conclusion that these contributions are negligible compared to the other dilepton sources and do not influence the detectability of the phi and omega vector meson peaks.Comment: 9 pages, 4 figures, version accepted for publication in Phys. Rev.

    Non-Coding RNA in Pancreas and β-Cell Development

    Get PDF
    In this review, we provide an overview of the current knowledge on the role of different classes of non-coding RNAs for islet and &#946;-cell development, maturation and function. MicroRNAs (miRNAs), a prominent class of small RNAs, have been investigated for more than two decades and patterns of the roles of different miRNAs in pancreatic fetal development, islet and &#946;-cell maturation and function are now emerging. Specific miRNAs are dynamically regulated throughout the period of pancreas development, during islet and &#946;-cell differentiation as well as in the perinatal period, where a burst of &#946;-cell replication takes place. The role of long non-coding RNAs (lncRNA) in islet and &#946;-cells is less investigated than for miRNAs, but knowledge is increasing rapidly. The advent of ultra-deep RNA sequencing has enabled the identification of highly islet- or &#946;-cell-selective lncRNA transcripts expressed at low levels. Their roles in islet cells are currently only characterized for a few of these lncRNAs, and these are often associated with &#946;-cell super-enhancers and regulate neighboring gene activity. Moreover, ncRNAs present in imprinted regions are involved in pancreas development and &#946;-cell function. Altogether, these observations support significant and important actions of ncRNAs in &#946;-cell development and function

    Expression of miR-206 in human islets and its role in glucokinase regulation

    Get PDF
    Inappropriate insulin secretion from β-cells is considered as an early sign of impaired glucose tolerance and type 2 diabetes (T2D). Glucokinase (GCK) is an important enzyme that regulates glucose metabolism and ensures that the normal circulating glucose concentrations are maintained. GCK expression is induced by glucose and regulated via transcription factors and regulatory proteins. Recently, microRNA-206 (miR-206) was reported to regulate GCK and alter glucose tolerance in normal and high-fat diet-fed mice. Although the study findings have implications for human diabetes, studies in human islets are lacking. Here, we analyze human islets from individuals without or with T2D, using TaqMan-based real-time qPCR at the tissue (isolated islet) level as well as at single cell resolution, to assess the relationship between miR-206 and GCK expression in normal and T2D human islets. Our data suggest that, unlike mouse islets, human islets do not exhibit any correlation between miR-206 and GCK transcripts. These data implicate the need for further studies aimed toward exploring its potential role(s) in human islets

    Nuclear Flow Excitation Function

    Get PDF
    We consider the dependence of collective flow on the nuclear surface thickness in a Boltzmann--Uehling--Uhlenbeck transport model of heavy ion collisions. Well defined surfaces are introduced by giving test particles a Gaussian density profile of constant width. Zeros of the flow excitation function are as much influenced by the surface thickness as the nuclear equation of state, and the dependence of this effect is understood in terms of a simple potential scattering model. Realistic calculations must also take into account medium effects for the nucleon--nucleon cross section, and impact parameter averaging. We find that balance energy scales with the mass number as AyA^{-y}, where yy has a numerical value between 0.35 and 0.5, depending on the assumptions about the in-medium nucleon-nucleon cross section.Comment: 11 pages (LaTeX), 7 figures (not included), MSUCL-884, WSU-NP-93-

    The mechanisms and microstructures of passive atmospheric CO2 mineralisation with slag at ambient conditions

    Get PDF
    Removal of CO2 already in the Earth's atmosphere through CO2 mineralisation with alkaline waste materials such as steel slag is one approach to mitigate the effects of anthropogenically-induced climate change. However, the microstructures produced during passive carbonation of slag are not well known. Here we use Scanning Electron Microscopy imaging and chemical mapping, X-Ray diffraction and stable isotopes (δ13C and δ18O) to show that ingassed and hydroxylated atmospheric CO2 reacts with Ca leached from slag to precipitate calcite directly on the slag surface. Precipitated calcite crystal morphologies vary, ranging from bladed and acicular crystals to layered deposits of micron-scale equant crystals. The variable morphology and extent of calcite precipitation documented is linked to a combination of internal (i.e. microstructural properties of the slag itself) and external (environmental conditions) factors. This work shows that atmospheric CO2 can be drawn down and mineralised passively by the slag at ambient conditions as part of the slag valorisation and reutilisation process

    Mutations in PROSC Disrupt Cellular Pyridoxal Phosphate Homeostasis and Cause Vitamin B6-Dependent Epilepsy

    Get PDF
    Pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, functions as a cofactor in humans for more than 140 enzymes, many of which are involved in neurotransmitter synthesis and degradation. A deficiency of PLP can present, therefore, as seizures and other symptoms which are treatable with PLP and/or pyridoxine. Deficiency of PLP in the brain can be caused by inborn errors affecting B6 vitamer metabolism or by inactivation of PLP; by compounds accumulating as a result of inborn errors of other pathways or by ingested small molecules. Whole exome sequencing of 2 children from a consanguineous family with pyridoxine-dependent epilepsy revealed a homozygous nonsense mutation in proline synthetase co-transcribed homolog (bacterial) (PROSC), a PLPbinding protein of hitherto unknown function. Subsequent sequencing of 29 unrelated indivduals with pyridoxine-responsive epilepsy identified 4 additional children with biallelic PROSC mutations. Pretreatment cerebrospinal fluid samples showed low PLP concentrations and evidence of reduced activity of PLP-dependent enzymes. However, cultured fibroblasts showed excessive PLP accumulation. An E.coli mutant, lacking the PROSC homologue (ΔYggS) is pyridoxine-sensitive; complementation with human PROSC restored growth whilst hPROSC bearing p.Leu175Pro, p.Arg241Gln and p.Ser78Ter did not. PLP, a highly reactive aldehyde, poses a problem for cells - how to supply enough PLP for apoenzymes while maintaining free PLP concentrations low enough to avoid unwanted reactions with other important cellular nucleophiles. Whilst the mechanism involved is not fully understood our studies suggest that PROSC is involved in intracellular homeostatic regulation of PLP, supplying this cofactor to apoenzymes while minimizing any toxic side reactions

    Multiorder coherent Raman scattering of a quantum probe field

    Full text link
    We study the multiorder coherent Raman scattering of a quantum probe field in a far-off-resonance medium with a prepared coherence. Under the conditions of negligible dispersion and limited bandwidth, we derive a Bessel-function solution for the sideband field operators. We analytically and numerically calculate various quantum statistical characteristics of the sideband fields. We show that the multiorder coherent Raman process can replicate the statistical properties of a single-mode quantum probe field into a broad comb of generated Raman sidebands. We also study the mixing and modulation of photon statistical properties in the case of two-mode input. We show that the prepared Raman coherence and the medium length can be used as control parameters to switch a sideband field from one type of photon statistics to another type, or from a non-squeezed state to a squeezed state and vice versa.Comment: 12 pages, 7 figures, to be published in Phys. Rev.

    On the origin of M81 group extended dust emission

    Get PDF
    Galactic cirrus emission at far-infrared wavelengths affects many extragalactic observations. Separating this emission from that associated with extragalactic objects is both important and difficult. In this paper we discuss a particular case, the M81 group, and the identification of diffuse structures prominent in the infrared, but also detected at optical wavelengths. The origin of these structures has previously been controversial, ranging from them being the result of a past interaction between M81 and M82 or due to more local Galactic emission. We show that over an order of a few arcmin scales, the far-infrared (Herschel 250 mu m) emission correlates spatially very well with a particular narrow-velocity (2-3 km s(-1)) component of the Galactic HI. We find no evidence that any of the far-infrared emission associated with these features actually originates in the M81 group. Thus we infer that the associated diffuse optical emission must be due to galactic light-back scattered off dust in our galaxy. Ultraviolet observations pick out young stellar associations around M81, but no detectable far-infrared emission. We consider in detail one of the Galactic cirrus features, finding that the far-infrared HI relation breaks down below arcmin scales and that at smaller scales there can be quite large dust-temperature variation

    Role of baryonic resonances in the dilepton emission in nucleon-nucleon collisions

    Get PDF
    Within an effective Lagrangian model, we present calculations for cross sections of the dilepton production in proton-proton and proton-neutron collisions at laboratory kinetic energies in 1-5 GeV range. Production amplitudes include contributions from the nucleon-nucleon bremsstrahlung as well as from the mechanism of excitation, propagation, and radiative decay of Delta(1232) and N*(1520) intermediate baryonic resonances. It is found that the delta isobar terms dominate the cross sections in the entire considered beam energy range. Our calculations are able to explain the data of the DLS collaboration on the dilepton production in proton-proton collisions for beam energies below 1.3 GeV. However, for incident energies higher than this the inclusion of contributions from other dilepton sources like Dalitz decay of pi0 and eta mesons, and direct decay of rho and omega mesons is necessary to describe the data.Comment: 22 pages, 7 figures, more details of the calculations added, version to appear in Phys. Rev

    Velocity-force characteristics of an interface driven through a periodic potential

    Full text link
    We study the creep dynamics of a two-dimensional interface driven through a periodic potential using dynamical renormalization group methods. We find that the nature of weak-drive transport depends qualitatively on whether the temperature TT is above or below the equilibrium roughening transition temperature TcT_c. Above TcT_c, the velocity-force characteristics is Ohmic, with linear mobility exhibiting a jump discontinuity across the transition. For TTcT \le T_c, the transport is highly nonlinear, exhibiting an interesting crossover in temperature and weak external force FF. For intermediate drive, F>FF>F_*, we find near TcT_c^{-} a power-law velocity-force characteristics v(F)Fσv(F)\sim F^\sigma, with σ1t~\sigma-1\propto \tilde{t}, and well-below TcT_c, v(F)e(F/F)2t~v(F)\sim e^{-(F_*/F)^{2\tilde{t}}}, with t~=(1T/Tc)\tilde{t}=(1-T/T_c). In the limit of vanishing drive (FFF\ll F_*) the velocity-force characteristics crosses over to v(F)e(F0/F)v(F)\sim e^{-(F_0/F)}, and is controlled by soliton nucleation.Comment: 18 pages, submitted to Phys. Rev.
    corecore