112,732 research outputs found

    Decay channels and charmonium mass-shifts

    Full text link
    The discovery in the last few years of the X,YX, Y and ZZ states of the extended charmonium family has highlighted the importance of the closeness of decay channels to an understanding of these mesons. We aid this debate by illustrating a simple calculational procedure for including the effect of open and nearby closed channels.Comment: 4 pages, 2 figures Revised version: (1) corrected 2 typos in Table II, (2) additional text in penultimate paragraph to clarify the calculation of mass-shifts for ηc′\eta_c' and ηc"\eta_c". We thank colleagues for pointing out confusing wording of previous tex

    Studies of the nucler equation of state using numerical calculations of nuclear drop collisions

    Get PDF
    A numerical calculation for the full thermal dynamics of colliding nuclei was developed. Preliminary results are reported for the thermal fluid dynamics in such processes as Coulomb scattering, fusion, fusion-fission, bulk oscillations, compression with heating, and collisions of heated nuclei

    Organic slug control using Phasmarhabditis hermaphrodita

    Get PDF
    Phasmarhabditis hermaphrodita is a lethal slug parasitic nematode that has been formulated into an effective biological control agent called Nemaslug®. We investigated the possibility of using different application methods of P. hermaphrodita to reduce cost and the number of nematodes applied. We also compared P. hermaphrodita with a new slug pellet called Ferramol®, which is available for use on organic farms

    Structure of the lightest scalar meson from the 1/Nc expansion of Unitarized Chiral Perturbation Theory and Regge Theory

    Full text link
    One-loop unitarized Chiral Perturbation Theory (UChPT) calculations, suggest a different Nc behaviour for the sigma or f_0(600) and rho(770) mesons: while the rho meson becomes narrower with Nc, as is expected for a q-qbar meson, the sigma becomes broader, and its contribution to the total cross section is less and less important. On the other hand, local duality requires a cancellation between the sigma and rho amplitudes, but if there is a different Nc behaviour for them, there is a possible contradiction between the Inverse Amplitude Method (IAM) and local duality for large Nc. However, next to next to leading order UChPT calculations suggested a subdominant q-qbar component for the sigma with a mass around 1.2 GeV. In this work, we show that this subdominant q-qbar component is indeed needed to ensure local duality.Comment: To appear in the Proceedings of the Hadron09 International Conference. 29th Nov-4th Dec. 2009. Tallahassee, FL, USA. 5 page

    Quarkonia in Hamiltonian Light-Front QCD

    Full text link
    A constituent parton picture of hadrons with logarithmic confinement naturally arises in weak coupling light-front QCD. Confinement provides a mass gap that allows the constituent picture to emerge. The effective renormalized Hamiltonian is computed to O(g2){\cal O}(g^2), and used to study charmonium and bottomonium. Radial and angular excitations can be used to fix the coupling α\alpha, the quark mass MM, and the cutoff Λ\Lambda. The resultant hyperfine structure is very close to experiment.Comment: 9 pages, 1 latex figure included in the text. Published version (much more reader-friendly); corrected error in self-energ

    Binary Induced Neutron-Star Compression, Heating, and Collapse

    Get PDF
    We analyze several aspects of the recently noted neutron star collapse instability in close binary systems. We utilize (3+1) dimensional and spherical numerical general relativistic hydrodynamics to study the origin, evolution, and parametric sensitivity of this instability. We derive the modified conditions of hydrostatic equilibrium for the stars in the curved space of quasi-static orbits. We examine the sensitivity of the instability to the neutron star mass and equation of state. We also estimate limits to the possible interior heating and associated neutrino luminosity which could be generated as the stars gradually compress prior to collapse. We show that the radiative loss in neutrinos from this heating could exceed the power radiated in gravity waves for several hours prior to collapse. The possibility that the radiation neutrinos could produce gamma-ray (or other electromagnetic) burst phenomena is also discussed.Comment: 17 pages, 7 figure

    Cylindrical Algebraic Sub-Decompositions

    Full text link
    Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry, used primarily for eliminating quantifiers over the reals and studying semi-algebraic sets. In this paper we introduce cylindrical algebraic sub-decompositions (sub-CADs), which are subsets of CADs containing all the information needed to specify a solution for a given problem. We define two new types of sub-CAD: variety sub-CADs which are those cells in a CAD lying on a designated variety; and layered sub-CADs which have only those cells of dimension higher than a specified value. We present algorithms to produce these and describe how the two approaches may be combined with each other and the recent theory of truth-table invariant CAD. We give a complexity analysis showing that these techniques can offer substantial theoretical savings, which is supported by experimentation using an implementation in Maple.Comment: 26 page

    The Influence of Nuclear Composition on the Electron Fraction in the Post-Core-Bounce Supernova Environment

    Get PDF
    We study the early evolution of the electron fraction (or, alternatively, the neutron-to-proton ratio) in the region above the hot proto-neutron star formed after a supernova explosion. We study the way in which the electron fraction in this environment is set by a competition between lepton (electron, positron, neutrino, and antineutrino) capture processes on free neutrons and protons and nuclei. Our calculations take explicit account of the effect of nuclear composition changes, such as formation of alpha particles (the alpha effect) and the shifting of nuclear abundances in nuclear statistical equilibrium associated with cooling in near-adiabatic outflow. We take detailed account of the process of weak interaction freeze-out in conjunction with these nuclear composition changes. Our detailed treatment shows that the alpha effect can cause significant increases in the electron fraction, while neutrino and antineutrino capture on heavy nuclei tends to have a buffering effect on this quantity. We also examine the effect on weak rates and the electron fraction of fluctuations in time in the neutrino and antineutrino energy spectra arising from hydrodynamic waves. Our analysis is guided by the Mayle & Wilson supernova code numerical results for the neutrino energy spectra and density and velocity profiles.Comment: 38 pages, AAS LaTeX, 8 figure

    Signatures of the collapse and revival of a spin Schr\"{o}dinger cat state in a continuously monitored field mode

    Full text link
    We study the effects of continuous measurement of the field mode during the collapse and revival of spin Schr\"{o}dinger cat states in the Tavis-Cummings model of N qubits (two-level quantum systems) coupled to a field mode. We show that a compromise between relatively weak and relatively strong continuous measurement will not completely destroy the collapse and revival dynamics while still providing enough signal-to-noise resolution to identify the signatures of the process in the measurement record. This type of measurement would in principle allow the verification of the occurrence of the collapse and revival of a spin Schr\"{o}dinger cat state.Comment: 5 pages, 2 figure

    Structure of Micro-instabilities in Tokamak Plasmas: Stiff Transport or Plasma Eruptions?

    Get PDF
    Solutions to a model 2D eigenmode equation describing micro-instabilities in tokamak plasmas are presented that demonstrate a sensitivity of the mode structure and stability to plasma profiles. In narrow regions of parameter space, with special plasma profiles, a maximally unstable mode is found that balloons on the outboard side of the tokamak. This corresponds to the conventional picture of a ballooning mode. However, for most profiles this mode cannot exist and instead a more stable mode is found that balloons closer to the top or bottom of the plasma. Good quantitative agreement with a 1D ballooning analysis is found provided the constraints associated with higher order profile effects, often neglected, are taken into account. A sudden transition from this general mode to the more unstable ballooning mode can occur for a critical flow shear, providing a candidate model for why some experiments observe small plasma eruptions (Edge Localised Modes, or ELMs) in place of large Type I ELMs.Comment: 11 pages, 3 figure
    • …
    corecore