2,176 research outputs found

    Quasi-steady spreading of a thin ridge of fluid with temperature-dependent surface tension on a heated or cooled substrate

    Get PDF
    We investigate theoretically the problem of the quasi-steady spreading or contraction of a thin two-dimensional sessile or pendent ridge of viscous fluid with temperature-dependent surface tension on a planar horizontal substrate that is uniformly heated or cooled relative to the atmosphere. We derive an implicit solution of the leading-order thin-film equation for the free-surface profile of the ridge and use this to examine the quasi-steady evolution of the ridge, the dynamics of the moving contact lines being modelled by a 'Tanner law' relating the velocity of the contact line to the contact angle; in particular, we obtain a complete description of the possible forms that the evolution may take. In both the case of a (sessile or pendent) ridge on a heated substrate and the case of a pendent ridge on a cooled substrate when gravitational effects are relatively weak, there is one stable final state to which the ridge may evolve. In the case of a pendent ridge on a cooled substrate when gravitational effects are stronger, there may be one or two stable final states; moreover, the contact angles may vary non-monotonically with time during the evolution to one of these states. In the case of a pendent ridge on a cooled substrate when gravitational effects are even stronger, there may be up to three stable final states with qualitatively different solutions; moreover, the ridge may evolve via an intermediate state from which quasi-steady motion cannot persist, and so there will be a transient non-quasi-steady adjustment (in which the contact angles change rapidly, with the positions of the contact lines unaffected), after which quasi-steady motion is resumed. Lastly, we consider the behaviour of the ridge in the asymptotic limits of strong heating or cooling of the substrate and of strong or weak gravitational effects

    THE USE OF ELASTIC ENERGY: A MATTER OF TIMING

    Get PDF
    NI

    Estimation of badger abundance using faecal DNA typing

    Get PDF
    1.Wildlife management and conservation programmes often require accurate information on population density, but this can be difficult to obtain, particularly when the species in question is nocturnal or cryptic. Badger populations in Britain are of intense management interest because they are a wildlife reservoir host of bovine tuberculosis (TB). Attempts to manage this infection in badgers, whether by population control or vaccination, require reliable methods of estimating population size. In addition, such estimates are also required to support research into badger ecology and TB epidemiology. Currently, the most accurate estimates of local badger population size are obtained from labour-intensive and time-consuming mark–recapture studies. 2. In recent years, DNA has been successfully extracted from the faeces of certain mammals, and used to generate a genetic profile of the defecating individual. Here we report on an application of this technology to estimate badger abundance.3.Faecal samples were collected on 10 consecutive days from every freshly deposited dropping at latrine sites close to occupied setts in three badger social groups. Badger DNA was extracted from 89% of samples, and 20 different individuals were reliably identified. The genotypes derived from the faecal samples were compared with those obtained from blood or samples from badgers live trapped at the same setts.4.The faecal genotypes from badgers with known trap histories revealed that latrines were used equally by males and females, and by badgers ranging in age from cubs(< 1 year old) to 9 years old. Individual badgers used the latrines on between one and six different nights. Rarefaction analysis produced abundance estimates that closely matched those obtained from live trapping. 5.Synthesis and applications. Systematic sampling and genetic typing of fresh faeces from badger latrines can provide data that can be used to estimate abundance accurately.This approach requires considerably less human resources than repeated live trapping and mark–recapture. The technique may be valuable for future badger research and management in relation to bovine TB, where accurate estimates of abundance at a local scale are required

    Parameters of the attenuated schistosome vaccine evaluated in the olive baboon

    Get PDF
    Five exposures of baboons to the attenuated schistosome vaccine gave greater protection than three exposures, but this attenuation was not sustained when challenge was delayed. Within the scope of the data collected, fecal egg counts and circulating antigen levels did not accurately predict the observed worm burdens. Levels of immunoglobulin G at challenge correlated best with protection, but there was little evidence of a recall response

    Irrotational binary neutron stars in quasiequilibrium

    Get PDF
    We report on numerical results from an independent formalism to describe the quasi-equilibrium structure of nonsynchronous binary neutron stars in general relativity. This is an important independent test of controversial numerical hydrodynamic simulations which suggested that nonsynchronous neutron stars in a close binary can experience compression prior to the last stable circular orbit. We show that, for compact enough stars the interior density increases slightly as irrotational binary neutron stars approach their last orbits. The magnitude of the effect, however, is much smaller than that reported in previous hydrodynamic simulations.Comment: 4 pages, 2 figures, revtex, accepted for publication in Phys. Rev.

    A mathematical model of the evaporation of a thin sessile liquid droplet : comparison between experiment and theory

    Get PDF
    A mathematical model for the quasi-steady diffusion-limited evaporation of a thin axisymmetric sessile droplet of liquid with a pinned contact line is formulated and solved. The model generalises the theoretical model proposed by Deegan et al. [Contact line deposits in an evaporating drop, Phys. Rev. E, 62 (2000) 756-765] to include the effect of evaporative cooling on the saturation concentration of vapour at the free surface of the droplet, and the dependence of the coefficient of diffusion of vapour in the atmosphere on the atmospheric pressure. The predictions of the model are in good qualitative, and in some cases also quantitative, agreement with recent experimental results. In particular, they capture the experimentally observed dependence of the total evaporation rate on the thermal conductivities of the liquid and the substrate, and on the atmospheric pressure

    Comparative study on the performance of multiparameter SAR Data for operational urban areas extraction using textural features

    Get PDF
    The advent of a new generation of synthetic aperture radar (SAR) satellites, such as Advanced SAR/Environmental Satellite (C-band), Phased Array Type L-band Synthetic Aperture Radar/Advanced Land Observing Satellite (L-band), and TerraSAR-X (X-band), offers advanced potentials for the detection of urban tissue. In this letter, we analyze and compare the performance of multiple types of SAR images in terms of band frequency, polarization, incidence angle, and spatial resolution for the purpose of operational urban areas delineation. As a reference for comparison, we use a proven method for extracting textural features based on a Gaussian Markov Random Field (GMRF)model. The results of urban areas delineation are quantitatively analyzed allowing performing intrasensor and intersensors comparisons. Sensitivity of the GMRF model with respect to texture window size and to spatial resolutions of SAR images is also investigated. Intrasensor comparison shows that polarization and incidence angle play a significant role in the potential of the GMRF model for the extraction of urban areas from SAR images. Intersensors comparison evidences the better performances of X-band images, acquired at 1-m spatial resolution, when resampled to resolutions of 5 and 10 m

    Global Properties of the 4-He + 28-Si Reaction at 117.4 and 198.5 MeV

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    On the importance of relative permeability data for estimating CO2 injectivity in brine aquifers

    Get PDF
    Performance assessment of possible CO2 storage schemes is often investigated through numerical simulation of the CO2 injection process. An important criterion of interest is the maximum sustainable injection rate. Relevant numerical models generally employ a multi-phase extension to Darcy's law, requiring data concerning the evolution of relative permeability for CO2 and brine mixtures with increasing CO2 saturation. Relative permeability data is acutely scarce for many geographical regions of concern and often cited as a major source of uncertainty. However, such data is expensive and time consuming to acquire. With a view to improving our understanding concerning the significance of relative permeability uncertainty on injectivity, this article presents a sensitivity analysis of sustainable CO2 injection rate with respect to permeability, porosity and relative permeability. Based on available relative permeability data obtained from 25 sandstone and carbonate cores discussed in the literature, injectivity uncertainty associated with relative permeability is found to be as high as ±57% for open aquifers and low permeability closed aquifers (100 mD), aquifer compressibility plays a more important role and the uncertainty due to relative permeability is found to reduce to ±6%
    corecore