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Summary
We investigate theoretically the problem of the quasi-steady spreading or contraction of a thin
two-dimensional sessile or pendent ridge of viscous fluid with temperature-dependent surface
tension on a planar horizontal substrate that is uniformly heated or cooled relative to the
atmosphere. We derive an implicit solution of the leading order thin-film equation for the free-
surface profile of the ridge, and use this to examine the quasi-steady evolution of the ridge, the
dynamics of the moving contact lines being modelled by a ‘Tanner law’ relating the velocity
of the contact line to the contact angle; in particular, we obtain a complete description of the
possible forms that the evolution may take. In both the case of a (sessile or pendent) ridge on a
heated substrate and the case of a pendent ridge on a cooled substrate when gravitational effects
are relatively weak there is one stable final state to which the ridge may evolve. In the case
of a pendent ridge on a cooled substrate when gravitational effects are stronger there may be
one or two stable final states; moreover, the contact angles may vary non-monotonically with
time during the evolution to one of these states. In the case of a pendent ridge on a cooled
substrate when gravitational effects are even stronger there may be up to three stable final states
with qualitatively different solutions; moreover, the ridge may evolve via an intermediate state
from which quasi-steady motion cannot persist, and so therewill be a transient non-quasi-steady
adjustment (in which the contact angles change rapidly, with the positions of the contact lines
unaffected), after which quasi-steady motion is resumed. Lastly we consider the behaviour of
the ridge in the asymptotic limits of strong heating or cooling of the substrate, and of strong or
weak gravitational effects.

1. Introduction

The spreading of a thin drop is a fundamental problem in fluid mechanics, with a vast range of
industrial applications. The review article by Oron, Davisand Bankoff (1) gives an excellent
overview of some of the theoretical work done on this and manyother thin-film flows.

In their pioneering work on non-isothermal thin-film flow, Burelbach, Bankoff and Davis (2)
formulated and analysed a rather general evolution equation for a two-dimensional thin film of fluid
on a uniformly heated or cooled horizontal planar substrate, including the effects of vapour recoil,
thermocapillarity (that is, variation of surface tension with temperature), surface tension, gravity,
long-range inter-molecular attraction, and mass gain or loss, the latter taken to be governed by the
departure from thermodynamic equilibrium at the free surface of the fluid.
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In a widely cited paper, Ehrhard and Davis (3) used a special case of the equation derived by
Burelbachet al. (2) and its axisymmetric analogue to study the quasi-steady spreading of both a
two-dimensional drop (a ridge) and an axisymmetric drop on auniformly heated or cooled planar
horizontal substrate subject to thermocapillary effects;they concluded that cooling the substrate
tends to enhance spreading, whereas heating it tends to reduce spreading. Ehrhard (4) demonstrated
the validity of this theoretical approach experimentally,and Ehrhard (5) performed a corresponding
study of pendent drops. These ideas were extended by Smith (6) to the case of a ridge on a non-
uniformly heated or cooled horizontal planar substrate; inthat case thermocapillary effects can
induce the ridge to migrate as a whole along the substrate, from the hotter region to the colder
region.

A somewhat similar approach to that of Ehrhard and Davis (3) was used by, for example,
Anderson and Davis (7), Ajaev (8) and Sodtke, Ajaev and Stephan (9) to study evaporating drops
on heated substrates. On the other hand, Picknett and Bexon (10) proposed a theory to describe
evaporating drops on unheated substrates, the evaporationrate being controlled by the diffusion
of vapour in the atmosphere; Hu and Larson (11) used this approach to investigate the effects of
thermocapillarity on such drops, and Dunnet al. (12) and Sefianeet al. (13) generalised it to include
the variation of the saturation concentration of vapour in the atmosphere with temperature (which
means, in particular, that the evaporation rate depends on the thermal conductivity of the substrate).
Sultan, Boudaoud and Ben Amar (14) proposed a way of unifying the approaches of Burelbachet
al. (2) and Picknett and Bexon (10) to the description of evaporation, by generalising the one-sided
approach to allow for diffusion of vapour in the atmosphere.

There have been many other papers concerned with thermocapillary effects on thin-film flows
on substrates. For example, Holland, Duffy and Wilson (15), in a study of steady gravity-driven
flow of a rivulet down a heated or cooled inclined substrate, showed that thermocapillarity induces
a transverse flow, so that fluid particles move down the substrate in helical paths. Also Holland,
Wilson and Duffy (16) and Holland, Wilson and Duffy (17) derived similarity solutions describing
flow of non-uniform rivulets and dry patches, respectively,when thermocapillarity is significant.
Other recent examples of studies of thermocapillary effects in thin-film flows include those by
Münch and Evans (18) on a thermocapillary-driven film rising out of a meniscus, by Haskett,
Witelski and Sur (19) on localized thermocapillary effects in driven films, and by Kalliadasis,
Kiyashko and Demekhin (20) on thermocapillary instability of a locally heated film. There have
also been studies of surfactant-driven (rather than thermocapillarity-driven) motion of thin films;
for example, Schwartzet al. (21) considered the surfactant-driven motion and break-up of thin
drops on a substrate.

In this paper we investigate the problem of the quasi-steadyspreading of a thin two-dimensional
ridge on a heated or cooled substrate, as studied by Ehrhard and Davis (3); by adopting the approach
used by Hollandet al. (15) in their study of steady non-isothermal rivulet flow, we obtain the exact
(implicit) solution of the ordinary differential equationfor the free-surface profile of the ridge, which
we then use to obtain a complete description of the possible forms that the evolution may take. Also
we investigate the behaviour of the ridge in the asymptotic limits of strong heating or cooling of the
substrate, and of strong or weak gravitational effects.

2. Problem formulation
Consider the spreading of a two-dimensional ridge of an incompressible Newtonian fluid with
uniform densityρ, viscosityµ, specific heatc and thermal conductivitykth on a heated or cooled
planar horizontal substrate. We take the motion to be quasi-steady, with the contact lines moving
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Fig. 1 Geometry of the problem (drawn for the case of a sessile ridge).

slowly relative to the bulk of the fluid, so that the dynamics of the motion are controlled by those of
the contact lines. The velocityu = (u, v, w), pressurep and temperatureT of the fluid are governed
by the familiar mass-conservation, Navier–Stokes and energy equations

∇ · u = 0, (2.1)

ρ u · ∇u = −∇p+ µ∇2u + ρg, (2.2)

ρc u · ∇T = kth∇2T, (2.3)

whereg = −gk is the acceleration due to gravity, referred to the Cartesian coordinatesOxyz
indicated in Fig. 1. At the solid substratez = 0 the fluid velocity is zero and the temperature
is equal to the prescribed uniform substrate temperatureT0. On the free surfacez = h(x, t) (t
denoting time), the appropriate boundary conditions are normal and tangential stress balances, an
energy balance and the kinematic condition, which take the forms

n · T · n = γ∇ · n, (2.4)

t · T · n = t · ∇γ, (2.5)

−kth∇T · n = αth(T − T∞), (2.6)

u · ∇(h− z) = 0. (2.7)

HereT denotes the stress tensor of the fluid,n andt are unit normal and tangential vectors to the
free surface,T∞ is the prescribed uniform temperature of the passive atmosphere above the ridge,γ
is the surface tension andαth is the unit surface thermal conductance. We takeµ, ρ, c, kth andαth

to be constants, but we assume that the surface tensionγ depends linearly on temperature according
to

γ(T ) = γ0 − λ(T − T0), (2.8)

whereλ = −dγ/dT is a positive constant andγ0 is the constant surface tension atT = T0. If we
introduce the local flux̄u = ū(x, t) defined by

ū =

∫ h

0

u dz (2.9)
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then the kinematic condition (2.7) may conveniently be re-written asūx = 0. We shall consider
only solutions that are symmetric aboutx = 0 and smooth atx = 0, so that they satisfy

hx = 0, hxxx = 0 (2.10)

at x = 0. Therefore hereafter we need consider the solution in0 6 x 6 a only, wherea = a(t)
denotes the semi-width of the ridge; the behaviour in−a 6 x 6 0 is then given by symmetry. The
constant cross-sectional areaV of the ridge is given by

V = 2

∫ a

0

h dx. (2.11)

At the position of the contact linex = a at whichh = 0 the contact angle takes the value
θ = θ(t). In general, the contact line will move on the substrate as the ridge evolves; although for
the quasi-steady flow considered herein this contact-line motion does not lead to force singularities
(as it would do if the same approach were used to study non-quasi-steady flow), it is nevertheless
necessary to specify the way in which the contact line may move. Many ways of modeling the
behaviour of fluid near a moving contact line have been proposed, ranging from the relatively simple
expedients of allowing slip at the substrate, introducing aprecursor film, or including intermolecular
forces, to the ‘interface-formation theory’ proposed by Shikhmurzaev (22) and used by, for example,
Billingham (23),(24). Here we adopt an approach used successfully by many previous authors and
assume that the velocity of the contact line depends on the contact angle according to an empirically
determined ‘Tanner law’ in the form

da

dt
= κU(θ), (2.12)

whereκ is an empirically determined coefficient with the dimensions of velocity, andU(θ) is a
dimensionless function taken to be of the form

U(θ) = (θ − θ∞)m (2.13)

or of the form
U(θ) = θm − θm

∞, (2.14)

whereθ∞ is the equilibrium value of the contact angle (which may be zero or non-zero), andm
(> 0) is an odd integer, usually 1 or 3. In the following the analysis will be given for both (2.13)
and (2.14) withm arbitrary, but the numerical results described later correspond to (2.13) with
m = 3. Although features of some experiments reported in the literature are inconsistent with the
use of a Tanner law or indeed of other proposed models of contact-line motion (see, for example,
Blake et al. (25),(26) and Marstonet al. (27),(28)), the good agreement found by Ehrhard (4),(5)
between theoretical results based on a Tanner law and experiments on non-isothermal spreading
of sessile and pendent drops is strong evidence that this is areasonable approach in the present
problem.

In the main text we now restrict attention to the non-perfectly wetting caseθ∞ 6= 0; the perfectly
wetting caseθ∞ = 0 is treated separately (see Appendix A).

A comment about the choice of time scale is in order. There aremany time scales involved
in this problem, including those for viscous diffusion,tviscous = ρV θ∞/µ, for thermal diffusion,

tthermal = ρcV θ∞/kth, for ‘bulk’ motion, tbulk = µ
√
V /γ0θ

m+ 1
2

∞ , and for contact-line motion,
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tCL =
√
V /κθ

m+ 1
2

∞ . Since we are considering the situation in which the contactlines move slowly
compared to the bulk of the fluid, the contact-line time scaletCL is much larger than other time
scales, and so we shall non-dimensionalise timet with tCL. (Of course, there could be alternative
situations in which other time scales of the problem exceedtCL; these are not included in the present
analysis.) Timet enters the problem only through the Tanner law (2.12), and the ridge evolves
through a series of quasi-equilibrium states, so thatt appears only ‘parametrically’ in the analysis.
When a ridge is first placed on a substrate it will not, in general, be in a quasi-equilibrium state.
In the situation considered herein the ridge will undergo aninitial rapid transient adjustment (on
the time scale oftbulk, presumably) to a quasi-equilibrium state, and only thereafter will it evolve
quasi-steadily (cf Ehrhard and Davis (3)); the present analysis concerns only the latter quasi-steady
evolution.

In order to make analytical progress we consider the case of athin ridge (with, in particular,
θ ≪ 1) and non-dimensionalise variables as follows:

x∗ =

√
θ∞x√
V

, z∗ =
z√
θ∞V

, h∗ =
h√
θ∞V

, t∗ =
κθ

m+ 1
2

∞ t√
V

, θ∗ =
θ

θ∞
,

u∗ =
u

κθm
∞

, w∗ =
w

κθm+1
∞

, p∗ =

√
V (p− p∞)

µκθ
m− 3

2
∞

, T ∗ =
T − T∞
T0 − T∞

;

(2.15)

with this choice of scaling the cross-sectional area of the ridge isV ∗ = 1. Note that Ehrhard and
Davis (3) used a different non-dimensionalisation involvinga0 = a(0). Moreover, for quasi-steady
motion the cross-sectional areaV cannot be prescribed independently ofa(0) and θ(0), as was
done by Ehrhard and Davis (3); this oversight in their analysis was subsequently pointed out and
corrected by Ehrhard (4, Appendix).

With superscript stars dropped, the scaled governing equations at leading order in the aspect ratio
θ∞ (≪ 1) are

ux + wz = 0, (2.16)

0 = −px + uzz, (2.17)

0 = −Cpz −G, (2.18)

Tzz = 0, (2.19)

ūx = 0, (2.20)

with the boundary conditions
u = w = 0, T = 1 (2.21)

onz = 0,

−Cp = hxx, (2.22)

∆Cuz = −(Tx + hxTz), (2.23)

Tz + BT = 0 (2.24)

onz = h,
h = 0, hx = −θ (2.25)
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atx = a, and (2.10) atx = 0, where the non-dimensional capillary, thermocapillary, Bond and Biot
numbers are defined by

C =
µκθm−3

∞

γ0

, ∆C =
µκθm−1

∞

λ(T0 − T∞)
, G =

ρgV

γ0θ∞
, B =

αth

√
V θ∞

kth

, (2.26)

respectively. The pressure is found by solving (2.18) subject to (2.22) onz = h:

Cp = G(h− z) − hxx, (2.27)

and the temperature is found by solving (2.19) subject to (2.21b) onz = 0 and (2.24) onz = h:

T =
1 +B(h− z)

1 +Bh
. (2.28)

The velocity is then found from (2.16) and (2.17), (2.21a) onz = 0, and (2.23) onz = h:

Cu = −Cpx

2
(2h− z)z +

Mhx

(1 +Bh)2
z, (2.29)

Cw =
Cpxx

6
(3h− z)z2 +

Cpxhx

2
z2 − M

[

(1 +Bh)hxx − 2Bh2
x

]

2(1 +Bh)3
z2, (2.30)

whereM is an appropriate Marangoni number defined by

M =
CB

∆C
=
αth

√
V λ(T0 − T∞)

kthγ0θ
3
2
∞

, (2.31)

so thatM > 0 (< 0) when the substrate is hotter (colder) than the surroundingatmosphere. The
non-uniform (x-dependent) surface temperatureTs = (1 + Bh)−1 gives rise to a non-uniform
surface tension, and hence a thermocapillary-driven contribution to the flow, corresponding to the
terms inM in (2.29) and (2.30).

From the kinematic condition (2.20) we obtain
[

−Cpxh
3

3
+

Mh2hx

2(1 +Bh)2

]

x

= 0, (2.32)

and substituting forp from (2.27), integrating once with respect tox and then using the conditions
(2.10) we obtain a third-order nonlinear ordinary differential equation forh, namely

(hxx −Gh)x +
3Mhx

2h(1 +Bh)2
= 0, (2.33)

in which the three terms correspond to the effects of surfacetension, gravity and thermocapillarity,
respectively, on the profile of the spreading ridge. In the limit B → 0 equation (2.33) simplifies to

(hxx −Gh)x +
3Mhx

2h
= 0. (2.34)

Equations (2.33) and (2.34) are consistent with equations (4.8p) and (5.5p), respectively, of Ehrhard
and Davis (3) when the flow is quasi-steady and their slip coefficientβ is set to zero.

The derivation so far is for the case of a sessile ridge, that is, a ridge spreading on the upper side
of a horizontal substrate. The case of a pendent ridge, that is, a ridge spreading on the underside
of a horizontal substrate, is very similar, and the free-surface profile is again governed by equation
(2.33) but withG negative (reflecting the different sign of gravity); moreover the case of zero gravity
corresponds toG = 0. Thus we allowG to be positive, negative or zero in the following discussion.
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3. Implicit solution for h

Hollandet al. (15, Eq. 36) obtained an equation equivalent to (2.33) for the free-surface profile of
a fluid film in a somewhat different physical problem, namely the steady gravity-driven draining
of a thin rivulet down a uniformly heated or cooled substratewhen thermocapillary effects are
significant. In their work Hollandet al. (15) obtained an implicit solution to their steady problem,
and we can adapt their steady solution to the present quasi-steady problem.

Integrating (2.33) twice with respect tox and imposing the boundary condition (2.10a) in the
form

hx = 0 when h = hm, (3.1)

wherehm(t) = h(0, t) denotes the (unknown) height atx = 0, and boundary conditions (2.25) in
the form

hx = −θ when h = 0, (3.2)

we obtain
h2

x = f(h), (3.3)

where we have defined

f(h) =

(

1 − h

hm

)

(

θ2 −Ghhm

)

− 3Mh log

[

h (1 +Bhm)

hm (1 +Bh)

]

, (3.4)

which must be non-negative in a physically relevant interval containingh = 0 andh = hm. The
corresponding equations for the profile of a rivulet obtained by Hollandet al. (15) are as in (3.3)
and (3.4) but withθ (constant in their problem but not here) scaled to unity.

By a trivial modification of the argument of Hollandet al. (15, Appendix A) one may show that
the solutionh = h(x, t) of (2.33) subject to (2.10) atx = 0 and (2.25) atx = a has a single
stationary point, a maximumh = hm at x = 0, and so the cross-sectional profile of the ridge
decreases monotonically fromh = hm at x = 0 to h = 0 at x = a. The solution of (3.3) may
therefore be written in the implicit form

x = hm

∫ 1

h/hm

1

[F (s)]
1
2

ds (3.5)

for 0 6 x 6 a, where we have definedF (s) byF (s) = f(shm), that is,

F (s) = (1 − s)(θ2 −Gh2
ms) − 3Mhms log

[

(1 +Bhm)s

1 +Bhms

]

. (3.6)

Then the constant-area condition (2.11) and the contact condition (2.25a) atx = a lead to

1 = 2h2
m

∫ 1

0

s

[F (s)]
1
2

ds, (3.7)

a = hm

∫ 1

0

1

[F (s)]
1
2

ds, (3.8)

respectively.
Equation (3.7) is an algebraic equation relatinghm = hm(t) andθ = θ(t), and then (3.8) gives
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a = a(t) in terms ofθ. Unlike in the steady rivulet problem considered by Hollandet al. (15), the
contact angleθ in the present quasi-steady ridge-spreading problem varies with timet, the evolution
of θ being governed by the re-scaled Tanner law

da

dt
= U(θ), (3.9)

with U(θ) now given by
U(θ) = (θ − 1)m (3.10)

or
U(θ) = θm − 1, (3.11)

to be integrated subject to an initial condition of the formθ(0) = θ0 for some knownθ0. Finally
with θ(t), a(t) andhm(t) determined, equation (3.5) givesh(x, t) implicitly. The initial valueθ0
is the value ofθ at the start of the quasi-steady motion, after any initial rapid (non-quasi-steady)
re-adjustment of the ridge has occurred, as explained earlier.

For later use we note here that, in general, the integrands in(3.5)–(3.8) are finite except when
s→ 1. ExpandingF nears = 1 yields

F (s) = C1(1 − s) + C2(1 − s)2 +O(1 − s)3 (3.12)

ass→ 1, where

C1 = θ2 −Gh2
m +

3Mhm

1 +Bhm

, C2 = Gh2
m − 3Mhm

2(1 +Bhm)2
. (3.13)

SinceF must be positive ass → 1− (h → h−m) we haveC1 ≥ 0, and we note that the singularities
in (3.5)–(3.8) ass→ 1 are integrable ifC1 > 0. Moreover, with (3.7) equation (3.8) may be written

a =
1

2hm

+ hm

∫ 1

0

1 − s

[F (s)]
1
2

ds, (3.14)

which is also useful later.
Henceforth for simplicity we mainly restrict attention to the limit B → 0, in which case (3.6)

reduces to
F (s) = (1 − s)(θ2 −Gh2

ms) − 3Mhms log s. (3.15)

4. Final equilibrium states

One of the primary concerns of Ehrhard and Davis (3) was the final equilibrium state of the ridge,
that is, the state that the ridge achieves in the limitt → ∞, in which θ → 1. The solution in the
final state is therefore determined by (3.5)–(3.8) withθ = 1. The shapeh∞ = h∞(x) of the free
surface, the semi-widtha∞, the contact angleθ (= 1) and the maximum heighthm∞ in the final
state will be independent oft; however, the free-surface temperature will be non-uniform, so there
will still be recirculating flow in the ridge due to the variation of surface tension with temperature.

The re-scaling

h̃m =
hm

θ
1
2

, ã = aθ
1
2 , M̃ =

M

θ
3
2

, G̃ =
G

θ
(4.1)

has the effect of removing explicit reference toθ from the problem, in the sense that in terms of the
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Fig. 2 Plots of re-scaled maximum heighth̃m = hm/θ
1/2 and re-scaled semi-width̃a = aθ1/2 as functions

of the re-scaled Marangoni number̃M = M/θ3/2 for values ofG̃ = G/θ between−80 and80 at intervals of
10. The critical curves corresponding tõG = G̃1 ≃ −12.85 andG̃ = G̃2 ≃ −29.9 are shown dashed (though
the curves forG̃ = G̃2 are barely distinguishable from those forG̃ = −30).

tilde quantities in (4.1) the implicit solution is again given by (3.5)–(3.8) but withθ = 1. Figure 2
shows̃hm andã as functions ofM̃ for various values of̃G, obtained from (3.7) and (3.8) withθ = 1.
The curves in Fig. 2 may be interpreted either as ‘snapshots’of relations betweenhm, a, θ andM
at any timet (with θ a varying function oft), or as plots of the dependence ofhm∞ anda∞ onM .
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The curve for̃a as a function ofM̃ for the particular casẽG = 0 in Fig. 2 is in agreement with the
plot of a∞ as a function ofM for G = 0 in the particular caseθ∞ = 0.5 given by Ehrhard and
Davis (3, Fig. 8(b)). Figure 2 shows that for̃G ≥ G̃1, whereG̃1 ≃ −12.85 (< 0), the semi-width̃a
(or a∞ in the final state) is a monotonic decreasing function ofM̃ , which supports the conclusion
of Ehrhard and Davis (3) in the caseG = 0 that cooling the substrate (M < 0) tends to enhance
spreading, whereas heating it (M > 0) tends to reduce spreading. On the other hand, Fig. 2 also
shows that forG̃ < G̃1, ã is a triple-valued function of̃M (and soa∞ is a triple-valued function of
M ); moreover, forG̃ < G̃2, whereG̃2 ≃ −29.9 (< G̃1), M̃ is a triple-valued function of̃a. This
more complicated behaviour will be analysed further shortly.

The representation of the solution in terms of the re-scaledmaximum height̃hm and semi-width̃a
defined in (4.1) allows comparison with the results of Ehrhard and Davis (3), but for computing the
evolution of the ridge it has the drawback that the curves shown in Fig. 2 are not trajectories of the
solution in general, so that during any evolution the solution moves continuously from one curve to
another, and so numerical interpolation between the curveswould be required for an evolution to be
computed. To circumvent this difficulty, we abandon the re-scaling (4.1), and adopt an alternative
procedure to deal with equations (3.5)–(3.9), as we now describe.

5. Evolution of the ridge

In general terms, the procedure to determine the evolution of the ridge is to obtainhm anda in terms
of θ from (3.7) and (3.8), and then to solve

dθ

dt
=

U(θ)

da/dθ
(5.1)

subject toθ(0) = θ0. Although many features of the behaviour of the ridge are obtainable
analytically in certain asymptotic limits and special cases (see section 7), in the general case the
governing equations must be solved numerically.

First we re-scale as follows:

x̂ = |M | 13x, t̂ = |M | 2m+1

3 t, ĥ =
h

|M | 13
, â = |M | 13 a,

ĥm =
hm

|M | 13
, θ̂ =

θ

|M | 23
, θ̂∞ =

1

|M | 23
, Ĝ =

G

|M | 23
(5.2)

for M 6= 0; this has the effect of removing explicit reference toM from the problem, in the sense
that in terms of the hatted quantities in (5.2) the implicit solution is again given by (3.5)–(3.8) but
with M set to+1 for flow on a heated substrate (M > 0), andM set to−1 for flow on a cooled
substrate (M < 0). Figures 3 and 4 show plots ofĥm andâ as functions of̂θ for various values of
the scaled Bond number̂G for M > 0 andM < 0, respectively. Crucially, unlike the curves in
Fig. 2, those in Figs 3 and 4are trajectories of the solution, that is, in any particular case, ĥm, â and
θ̂ will track along one of these curves as time elapses, and so itis now only this time dependence
that needs to be computed in order to determine the evolution.

Figure 3 shows that for a heated substrate (M > 0), ĥm and â are single-valued functions of
θ̂ for any value ofĜ. On the other hand, Fig. 4 shows that for a cooled substrate (M < 0), ĥm

and â are single-valued functions of̂θ only for Ĝ ≥ Ĝ1, whereĜ1 ≃ −7.34 (< 0), but that for
Ĝ < Ĝ1 the trajectories are ‘sigmoid’, and̂hm andâ are triple-valued functions of̂θ in some interval
0 < θ̂l 6 θ̂ 6 θ̂r (whereθ̂l and θ̂r are values of̂θ at which d̂a/dθ̂ = ∞), but are single-valued
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Ĝ = 0
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Fig. 3 Plots of re-scaled maximum heightĥm = M−1/3hm and re-scaled semi-widtĥa = M1/3a as functions
of the re-scaled contact anglêθ = M−2/3θ for re-scaled Bond numberŝG = M−2/3G = −20, −15, . . . ,15,
20, forM > 0.
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Fig. 4 Plots of re-scaled maximum heightĥm = |M |−1/3hm and re-scaled semi-widtĥa = |M |1/3a as
functions of the re-scaled contact angleθ̂ = |M |−2/3θ for re-scaled Bond numberŝG = |M |−2/3G = −20,
−18, . . . , 18, 20, for M < 0. The dashed curves, on whicĥG = Ĝ1 ≃ −7.34 andĜ = Ĝ2 ≃ −10.22,
mark the boundaries between the regionĜ ≤ Ĝ1 where only single-valued solutions are possible, the region
Ĝ > Ĝ1 where the solution is triple-valued in some intervalθ̂l 6 θ̂ 6 θ̂r, and the region̂G > Ĝ2 where also
there are three solutions forθ for values ofa in some interval̂at 6 â 6 âb.
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otherwise. ForĜ < Ĝ2, whereĜ2 ≃ −10.22 (< Ĝ1), the trajectories in Fig. 4 are ‘bi-sigmoid’:
not only arêhm andâ triple-valued functions of̂θ in some interval0 < θ̂l 6 θ̂ 6 θ̂r, but alsoθ̂ is
a triple-valued function of̂a or ĥm in some interval̂at 6 â 6 âb (whereât andâb are values of̂a
at which d̂a/dθ̂ = 0, corresponding to valueŝθt andθ̂b of θ̂). Thus whenĜ < Ĝ1 there is a range
of values ofθ̂ in which there are three different ridge solutions with the same contact angle, and
whenĜ < Ĝ2 there is also a range of values ofâ (or ĥm) in which there are three different ridge
solutions with the same semi-width (or the same maximum height). The dashed trajectories in Fig.
4 correspond to the critical caseŝG = Ĝ1 ≃ −7.34 andĜ = Ĝ2 ≃ −10.22.

The trajectories in Figs 3 and 4 are of essentially three different types; these are sketched in Fig.
5, in which the three types correspond to case (i), cases (ii)–(iv) and cases (v)–(ix), respectively.
Case (i) is for bothM > 0 for all Ĝ andM < 0 for Ĝ ≥ Ĝ1, cases (ii)–(iv) are forM < 0 for
Ĝ2 ≤ Ĝ < Ĝ1, and cases (v)–(ix) are forM < 0 for Ĝ < Ĝ2. These nine cases (i)–(ix) constitute
the full range of possible forms of evolution of the ridge. The qualitative behaviour of the solution
depends on the initial valueŝθ(0) and (in some cases)̂a(0), as well as on the value of the scaled
equilibrium contact anglêθ∞ = |M |−2/3. The latter is drawn as the dotted vertical line in each
sketch in Fig. 5, and distinguishes the individual cases in (ii)–(iv) and (v)–(ix): cases (ii)–(iv) are
for θ̂∞ > θ̂r, θ̂l < θ̂∞ < θ̂r andθ̂∞ < θ̂l, respectively, whenM < 0 andĜ2 < Ĝ < Ĝ1, and cases
(v)–(ix) are forθ̂∞ > θ̂r, θ̂b < θ̂∞ < θ̂r, θ̂t < θ̂∞ < θ̂b, θ̂l < θ̂∞ < θ̂t andθ̂∞ < θ̂l, respectively,
whenM < 0 andĜ < Ĝ2. (There are also ‘marginal’ cases such asθ̂∞ = θ̂r, but these are not
shown separately in Fig. 5, for brevity.)

From the Tanner law (3.9)–(3.11)da/dt has the same sign asθ − 1, and hencedâ/dt has the
same sign aŝθ − θ̂∞; thus to the left of̂θ = θ̂∞ in Fig. 5 the evolution proceedsdown the curves,
and to the right of̂θ = θ̂∞ the evolution proceedsup the curves, as indicated by the arrows on the
curves. Equilibrium solutions (that is, wheredâ/dt = 0) are given by any intersection point of a
curve with the vertical linêθ = θ̂∞. An equilibrium is stable (unstable) if the evolution from nearby
states is towards (away from) that point as time elapses, that is, if the arrows locally are directed
towards (away from) the point; thus an equilibrium is stable(unstable) if and only if the curve in
Fig. 5 crosses the linêθ = θ̂∞ with negative (positive) slopedâ/dθ̂. In Fig. 5 stable and unstable
equilibrium points are denoted by dots with the labels S and U, respectively. All solutions will
approach a stable equilibrium at large enought; if there is more than one stable equilibrium then
which one is approached at larget is determined by the value of̂θ(0) if θ̂(0) < θ̂l or θ̂(0) > θ̂r, but
by the values of botĥθ(0) andâ(0) if θ̂l ≤ θ̂(0) ≤ θ̂r.

As may be seen in Fig. 5, in all casesâ changes monotonically witht; specifically, ifθ̂(0) > θ̂∞
(θ̂(0) < θ̂∞) thenâ increases (decreases) monotonically witht towards equilibrium. The behaviour
of θ̂, on the other hand, can be more interesting, as we now consider for the different cases.

In case (i) there is one (stable) equilibrium, and for any initial condition eitherθ̂ increases
monotonically and̂a decreases monotonically witht, or vice versa, that is, either the ridge widens
and the contact angle decreases witht, or the ridge narrows and the contact angle increases witht.

In cases (ii) and (iv), there is again one (stable) equilibrium, andâ increases or decreases
monotonically witht. However, in case (ii), if̂θ(0) > θ̂∞ thenθ̂ decreases monotonically, whereas
if θ̂(0) < θ̂∞ then, depending on the initial state,θ̂ may, for example, increase then decrease
and then increase again, before approaching its equilibrium value θ̂∞. Similarly in case (iv), if
θ̂(0) < θ̂∞ then θ̂ decreases monotonically, whereas ifθ̂(0) > θ̂∞ then, depending on the initial
state,θ̂ may, for example, decrease then increase and then decrease again, before approachinĝθ∞.
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Fig. 5 Sketch of the three different types of trajectory, namely monotonic (case (i)), sigmoid (cases (ii)–(iv)) and bi-sigmoid (cases (v)–(ix)), along which
the solution may evolve. Case (i) is forM > 0 for all Ĝ and forM < 0 for Ĝ > Ĝ1, cases (ii)–(iv) are forM < 0 for Ĝ2 < Ĝ < Ĝ1, and cases
(v)–(ix) are forM < 0 for Ĝ < Ĝ2. The value of the scaled equilibrium contact angleθ̂∞ = |M |−2/3 (shown as a dotted vertical line) distinguishes the
individual cases in (ii)–(iv) and (v)–(ix). Stable and unstable equilibrium points are denoted by dots with labels S andU, respectively, and the arrows on
the trajectories indicate increasing timet.
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In case (iii) there are three equilibrium solutions, two of which are stable and the other unstable.
Again θ̂ may vary monotonically witht, or may increase and then decrease, or vice versa.

Cases (v)–(ix) are more complicated, but some of the features (such as possible non-monotonic
variation of θ with t) are similar to those in cases (i)–(iv) and so need not be discussed again;
we therefore concentrate on just the differences from cases(i)–(iv), occurring because of the bi-
sigmoid nature of the trajectories. For brevity we describeonly case (v) in detail; the other cases
are somewhat similar, and so we merely summarize the behaviour for them.

In case (v) there is only one (stable) equilibrium (somewhatlike case (ii)), but the trajectory has
stationary points in̂θ < θ̂∞ (on the ‘middle branch’ in Fig. 5), namely a maximum atθ̂ = θ̂t and
a minimum atθ̂ = θ̂b. Sincedâ/dt < 0 for θ̂ < θ̂∞, the solution can attain the maximum only if
it starts there, att = 0; thereafter it will simply evolve away from this point, witĥa decreasing but
with θ̂ increasing or decreasing, depending on whetherθ̂ starts slightly greater than or slightly less
thanθ̂t. On the other hand, depending on the values ofθ̂(0) andâ(0), it is possible for the solution
to attain the minimum at some instant.However, there is then no quasi-steady state accessible
to it, that is, the solution cannot then evolve further alongthe curve. Presumably, therefore, the
ridge will undergo a rapid (non-quasi-steady) transient motion to some other state. In terms of the
present quasi-steady analysis, this non-quasi-steady motion will appear as an instantaneous ‘jump’
to the new state. The question arises as to what state the solution will jump to. The present quasi-
steady theory cannot answer this question, but it seems reasonable to assume that it will jump with
â constant but witĥθ changing instantaneously, that is, the contact angle will change (decrease, in
this case) instantaneously while the width of the ridge remains unchanged; this choice has the merit
that rapid motion of the contact line does not occur. The jumpwill take the solution to the (unique)
point on the curve at whicĥa has the same value as at the minimum, and thereafter the solution will
presumably resume its quasi-steady evolution, eventuallyapproaching the stable equilibrium.

In case (vi) there are three equilibria, two stable and one unstable (somewhat as in case (iii));
also a jump may again occur, as in case (v). In case (vii) thereare three equilibria, all of which are
stable (unlike in any other case); a jump in the solution is not required. In case (viii) there are three
equilibria, two stable and one unstable (somewhat as in case(iii)); a jump can again occur, as in
case (v), except that noŵθ will increase instantaneously at the jump. In case (ix) there is only one
(stable) equilibrium (somewhat like case (iv)), and again ajump may occur, as in case (viii).

Figure 6 shows examples of the evolutions ofθ anda for pendent ridges of the same area but
with differing initial values ofθ anda for the caseG = −25, M ≃ −3.9528 (corresponding to
case (iii) withĜ = −10, θ̂∞ = 0.4); as stated earlier, Tanner law (3.9) withU(θ) given by (3.10)
and withm = 3 was used in the computations. Equilibrium solutions in Fig.6 are marked with
dashed lines, labelled S for stable and U for unstable. The labels A, B, . . . , H in small boxes show
which curves in the two parts of the figure correspond; also the inset shows the parts of the relevant
curve in Fig. 5 on whichθ0 lies. Figures 7 and 8 are as in Fig. 6 except thatG ≃ −35.0882,
M = −5 in Fig. 7 (corresponding to case (vii) witĥG = −12, θ̂∞ ≃ 0.3420), andG ≃ −45.9786,
M = −7.5 in Fig. 8 (corresponding to case (viii) witĥG = −12, θ̂∞ ≃ 0.2610). Figures 6–8
confirm the above general description of the possible forms of behaviour; in particular, all solutions
(including any that start near an unstable equilibrium) approach a stable equilibrium at large times.
In Figs 6 and 8 there are two stable equilibria and one unstable equilibrium, whereas in Fig. 7
there are three stable equilibria. Althougha always varies monotonically witht, θ may vary non-
monotonically; for example, in Fig. 6 on the curve labelled Cthe contact angleθ first decreases
and then increases witht, whereas on the curve labelled D it first increases and then decreases with
t. On the curves labelled A and B in all three figures, the semi-widthsa essentially achieve their
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Fig. 6 Logarithmic plot of the evolution of the contact angleθ and the semi-widtha of ridges with differing
initial contact angles and widths but with the same area, forthe caseG = −25,M ≃ −3.9528 (corresponding
to case (iii) withĜ = −10, θ̂∞ = 0.4), computed with Tanner law (3.9) withm = 3. The labels A, B, . . . , H
in small boxes show which curves in the two parts of the figure correspond; also the inset shows the parts of
the curve for case (iii) in Fig. 5 on whichθ0 lies.
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Fig. 7 As in Fig. 6, except thatG ≃ −35.0882, M = −5 (corresponding to case (vii) witĥG = −12,
θ̂∞ = 0.3420).
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Fig. 8 As in Fig. 6, except thatG = −45.9786, M = −7.5 (corresponding to case (viii) witĥG = −12,
θ̂∞ ≃ 0.2610).
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final-state valuesa∞ very quickly, whereas the corresponding contact anglesθ vary much more
slowly. Figure 7 includes evolutions for three examples (B,D and H) with the same value ofθ0
(namelyθ0 ≃ 0.8772, corresponding tôθ(0) = 0.3) but different values ofa(0), and evolutions for
three examples (C, E and F) with the same value ofa(0) (namelya(0) = 2.53, corresponding to
â(0) ≃ 4.3262) but different values ofθ0. In Fig. 8 discontinuous jumps inθ (with a continuous)
are seen in the examples labelled D and E (where the jumps are drawn as vertical lines). Note in
Fig. 7 that although the curve fora labelled F appears to pass through a stable equilibrium, in fact it
does not, as inspection of the inset in Fig. 7(a) shows.

In summary, there are three different types of trajectory inFig. 5: monotonic (case (i)), sigmoid
(cases (ii)–(iv)), and bi-sigmoid (cases (v)–(ix)). The nature of the evolution along these trajectories
is determined by the initial values ofθ and (in some cases)a: there may be one, two or three stable
final states to which the ridge may evolve;a always varies monotonically witht but θ may vary
non-monotonically; and a non-quasi-steady change may occur in the value ofθ at some instant.
In the case of a sessile ridge (G > 0) or a pendent ridge (G < 0) on a heated substrate (M >
0) and the case of a pendent ridge (G < 0) on a cooled substrate (M < 0) when gravitational
effects are relatively weak there is one stable final state towhich the ridge may evolve, andθ varies
monotonically witht during the evolution to this state. In the case of a pendent ridge (G < 0) on
a cooled substrate (M < 0) when gravitational effects are stronger there may be one ortwo stable
final states; moreover,θ may vary non-monotonically witht during the evolution to one of these
states. In the case of a pendent ridge (G < 0) on a cooled substrate (M < 0) when gravitational
effects are even stronger there may be up to three stable finalstates, andθ may again vary non-
monotonically; moreover, the ridge may evolve via an intermediate state from which quasi-steady
motion cannot persist, and so there will be a transient non-quasi-steady adjustment (in whichθ
changes rapidly, witha unaffected), after which quasi-steady motion is resumed.

6. Flow patterns

The flow patterns within the ridge are of interest. By using (2.27) and (2.33) we may express the
velocity components (2.29) and (2.30) as†

Cu =
Mhxz(3z − 2h)

4h(1 +Bh)2
, (6.1)

Cw =
Mz2

4h2(1 +Bh)3
[

h(1 +Bh)(h− z)hxx + h2
x (z +Bh(3z − 2h))

]

. (6.2)

Furthermore, if we define a stream functionψ = ψ(x, z, t) by u = −ψz andw = ψx, with ψ = 0
onz = 0, thenψ is given by

Cψ(x, z) =
Mhxz

2(h− z)

4h(1 +Bh)2
. (6.3)

Each streamlineψ = constant is a closed curve, which may be expressed explicitly (in terms of the
known functionh(x, t)) by

z =
h

2

[

1 + 2 cos

{

π

3
± 1

3
cos−1

(

−1 − 54(1 +Bh)2Cψ

Mh2[f(h)]
1
2

)}]

, (6.4)

† There is a typographical error in the expression forCw given by Ehrhard and Davis (3) in their equation (4.11p): the
first term should be

(

1

6
z3 − 1

2
hz2 − βhz

)

D4xh.



20 G. J. DUNNet al.

the ± sign here corresponding to the ‘lower’ and ‘upper’ arcs of the streamline; the latter meet
vertically on the curvez = 2h/3 at points whereh satisfiesMh2[f(h)]1/2 = −27(1 +Bh)2Cψ.

Stagnation points occur whereu = w = 0, which may be shown to lead either tox = 0, z = hm

(the ‘apex’ of the ridge) or to(x, z) = (xs, zs), where

xs = hm

∫ 1

hs/hm

ds

[F (s)]
1
2

(0 < xs < a), zs =
2hs

3
, (6.5)

in whichh = hs is any root of the algebraic equation

2BGhmh
3 + [6Ghm −B(1 +Gh2

m)]h2 − 5(1 +Gh2
m)h

− 3Mhmh+ 4hm − 3Mhmh(5 +Bh) log

[

h(1 +Bhm)

hm(1 +Bh)

]

= 0 (6.6)

that lies in the interval0 < hs < hm. WhenB = 0 it may be shown that except in the caseM < 0
and−75/32 < Ĝθ̂2 < 0 there is always only one stagnation point in0 < x < a; however, for
M < 0 and−75/32 < Ĝθ̂2 < 0, one, two or three stagnation points are possible, all lyingon the
curvez = 2h/3. Sinceθ̂ varies with timet it is possible in principle for a ridge to evolve through
a sequence of states with differing numbers of stagnation points, and hence different streamline
topologies.

An example of a situation where single or multiple stagnation points may arise is shown in Fig.
9 for the casêG = −10, θ̂∞ = 0.4 (so thatM = −θ̂−3/2

∞ ≃ −3.9528, G = |M |2/3Ĝ = −25).
The dashed curves in Fig. 9 correspond toz = 2h/3 where the horizontal component of velocity is
zero, and the dots denote stagnation points. All three solutions in Fig. 9 correspond to ridges in their
final states (specifically, the three final states shown in Fig. 6), so that they have the same contact
angleθ = 1 (as well as the same areaV = 1). Moreover, these cases have the same values of the
parametersM , G andθ∞, and so may be regarded as corresponding to the same fluid in similar
physical conditions: the stark differences in the free-surface profiles and flow patterns in the three
cases could arise only because these ridges started from different initial profilesh(x, 0), and evolved
very differently. Figure 9(a) is typical of the case when there is one stagnation point; here the flow
comprises a single closed eddy, with all particles circulating round the stagnation point. According
to the analysis in§5 this solution is stable. Figure 9(b) is an example of a ridgewith three stagnation
points, namely a ‘saddle’ stagnation point between two ‘elliptic’ stagnation points, all lying on the
curvez = 2h/3. Thus the streamlines are again closed curves, but the flow comprises two internal
eddies which in turn are surrounded by circulating fluid. This solution is unstable. Figure 9(c) also
has one stagnation point, with one eddy; however, the flow is confined to a narrow region near the
contact line, the fluid outside this region essentially being static. This solution is stable.

In order to compare the present exact results for streamlines with the corresponding numerical
results of Ehrhard and Davis (3) we plot the former in Figs 10 and 11, with the free-surface profile
of the ridge taken from equation (7.2p) of Ehrhard and Davis (3), in which we determined the semi-
width a by solving equation (7.3p) of Ehrhard and Davis (3) numerically. Figures 10 and 11 show
the streamline patterns in the casesM = 0.2 andM = −0.1, respectively, withG = 0 in both
cases, corresponding to Figs 6 and 7 of Ehrhard and Davis (3). Evidently while the shapes of the
free surface are in good agreement, the streamline patternsare at best in only qualitative agreement.
In particular, in Fig. 6 of Ehrhard and Davis (3) the stagnation point is too close to the free surface,
and in Figs 7(a) and (b) of Ehrhard and Davis (3) the stagnation points appear to be missing entirely,
and the flows near the substrates are in the wrong direction.
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Fig. 9 The three possible final-state solutions (so thatθ = 1) for the free-surface profiles and streamlines
for the caseG = −25, M ≃ −3.9528 (corresponding to case (iii) in Fig. 5 witĥG = −10, θ̂∞ = 0.4,
and to the final-state solutions in Fig. 6). The streamlines are plotted at intervals of0.025 in Cψ in (a),
0.0025 in (b), and2.5 × 10−5 in (c), but in (b) additional intermediate streamlines are plotted forCψ =
10−4 × {5, 1.51, 0.607, 0.4}, in order to make the smaller eddy clearer. The curvesz = 2h/3, on which the
horizontal component of velocity is zero, are shown dashed;the dots denote stagnation points.
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Fig. 10 Plots of the instantaneous free surface and streamline patterns in the caseG = 0, M = 0.2 at times
t = 0.01, 1.2 and42.0, corresponding to Fig. 6 of Ehrhard and Davis (3). The streamlines are plotted at
intervals of−0.5×10−4 in Cψ. The curvesz = 2h/3, on which the horizontal component of velocity is zero,
are shown dashed; the dots denote stagnation points.
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Fig. 11 Plots of the instantaneous free surface and streamline patterns in the caseG = 0,M = −0.1 at times
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of 0.5× 10−4 in Cψ. The curvesz = 2h/3, on which the horizontal component of velocity is zero, are shown
dashed; the dots denote stagnation points. In part (c) the flow is so weak that no streamlines appear.
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7. Special cases and asymptotic limits

As previously remarked, it is informative to investigate (3.5)–(3.9) in special cases and in various
asymptotic limits.

7.1 The special case G = M = 0

In the special case of negligible gravity and thermocapillarity effects,G = M = 0, equations (3.7)
and (3.8) give straightforwardly

hm =

(

3θ

8

)
1
2

, a =

(

3

2θ

)
1
2

, (7.1)

and (3.5) shows that, as expected, the free surface has the simple parabolic profile

h = hm

(

1 − x2

a2

)

(7.2)

at each instant (cf Oronet al. (1, p. 966)). Substituting (7.1) into the Tanner law (3.9) we obtain the
ordinary differential equation governing the evolution ofθ, namely

dθ

dt
= −

(

8

3

)
1
2

θ
3
2 U(θ). (7.3)

SinceU(θ) has the same sign asθ − 1, equation (7.3) shows thatθ is a monotonic function oft,
increasing in the caseθ0 < 1 and decreasing in the caseθ0 > 1. The implicit solution of (7.3) is

(

8

3

)
1
2

t =

∫ θ0

θ

dθ̃

θ̃
3
2 U(θ̃)

. (7.4)

Although the integral here may be evaluated forU(θ) of the form (3.10) or (3.11) for allm > 1,
in general it involves hypergeometric functions and is not particularly informative. In the particular
casesm = 1 andm = 3 we obtain

(

8

3

)
1
2

t =

[

2

θ̃
1
2

+ log
θ̃

1
2 − 1

θ̃
1
2 + 1

]θ0

θ

(7.5)

whenm = 1,
(

8

3

)
1
2

t =

[

15θ̃2 − 25θ̃ + 8

4(θ̃ − 1)2θ̃
1
2

+
15

8
log

θ̃
1
2 − 1

θ̃
1
2 + 1

]θ0

θ

(7.6)

whenm = 3 in (3.10), and

(

8

3

)
1
2

t =

[

2

θ̃
1
2

+
1√
3

tan−1 2θ̃ − 1√
3

+
1√
3

tan−1 2θ̃ + 1√
3

+
1

6
log

(θ̃
1
2 − 1)3(θ̃

3
2 + 1)

(θ̃
1
2 + 1)3(θ̃

3
2 − 1)

]θ0

θ
(7.7)
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whenm = 3 in (3.11). Also in the limitt→ ∞ we have

|θ − 1| ∼
( √

3

2
√

2 (m− 1) t

)

1

m−1

→ 0 (7.8)

whenm > 1 in (3.10), and

θ − 1 ∝ exp

(

−
(

8

3

)
1
2

mt

)

→ 0 (7.9)

whenm = 1 in (3.10) orm > 1 in (3.11); thus the ridge approaches its final state exponentially
for all values ofm with Tanner law (3.11) and form = 1 with (3.10), but according to a power
law form > 1 with (3.10). Note that this conclusion does not entirely agree with that of Ehrhard
and Davis (3, §6 (Case 1)), who state that forθ∞ 6= 0 there is always an exponential approach to
equilibrium; in fact, as the above shows, this is true only for the casem = 1 for their choice of
Tanner law (3.10).

In Appendix B we describe the solution in the limitM → 0 (corresponding to weak heating or
cooling of the substrate), both whenG = 0 and whenG 6= 0; the solutions in both cases comprise
regular expansions about the solution in the caseM = 0 (cf Ehrhard and Davis (3)).

7.2 The limit of strong heating of the substrate, M → ∞
In the limit of strong heating,M → ∞, equation (3.7) can be satisfied only if the solution for
hm satisfieshm → ∞ andhm = o(M). The integrals in (3.5)–(3.8) are dominated by global
contributions (cf Hinch (29)) with integrandss1/2(−3Mhm log s)−1/2 and(−3Mhms log s)−1/2;
we thus find at leading order thathm anda are given by

hm ∼
(

9M

8π

)
1
3

→ ∞, a ∼
(

π√
3M

)
1
3

→ 0 (7.10)

asM → ∞, showing that the ridge becomes narrow and deep in this limit. Moreover equation (3.5)
shows that at leading-order the free surface has a ‘bell-shaped’ profile given by

h ∼ hm exp

(

−2
[

erf−1
(x

a

)]2
)

, (7.11)

where erf−1 denotes the inverse of the error function. Proceeding to next order yields

hm =

(

9M

8π

)
1
3

− (
√

15 − 3)G

4 (9π2M)
1
3

+O

(

1

M

)

, a =

(

π√
3M

)
1
3

+
(3 −

√
5)G

12M
+O

(

1

M
5
3

)

(7.12)
asM → ∞. We conclude that, to the orders given,a andhm are independent ofθ, and hence oft,
so that the free surface of the ridge is stationary (though there is, of course, still fluid motion in the
ridge). It would be necessary to go to higher order inM in order to determine the evolution of the
ridge from the Tanner law (3.9); we do not pursue this here.
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7.3 The limit of strong cooling of the substrate, M → −∞
In the limit of strong cooling,M̄ = −M → ∞, the maximum heighthm must be finite for the
integral in (3.7) to be real, but equation (3.7) can be satisfied at leading order only ifC1 = 0 in
(3.13); thereforehm ∼ H asM → −∞, whereH is defined by

H =
3M +

√
9M2 + 4θ2G

2G
. (7.13)

Expanding this and using (3.14) we have

hm ∼ H ∼ θ2

3M̄
− θ4G

27M̄3
→ 0, a ∼ 3M̄

2θ2
+
G+ 2b θ

6M̄
→ ∞ (7.14)

asM̄ → ∞, where

b =

∫ 1

0

1 − s√
1 − s+ s log s

ds ≃ 1.2597; (7.15)

equation (7.14) shows that the ridge becomes shallow and wide in this limit. Moreover (3.5) shows
that the free-surface profile is flat, withh ∼ hm, except in a thin boundary layer nearx = a.

Substituting fora from (7.14) into the Tanner law (3.9) we obtain the ordinary differential
equation governing the evolution ofθ at leading order:

dθ

dt
= −θ

3 U(θ)

3M̄
. (7.16)

SinceU(θ) has the same sign asθ − 1, equation (7.16) shows thatθ is again a monotonic function
of t, increasing in the caseθ0 < 1 and decreasing in the caseθ0 > 1. The implicit solution of (7.16)
is

t = 3M̄

∫ θ0

θ

dθ̃

θ̃3 U(θ̃)
. (7.17)

Although the integral here may be evaluated for allm > 1 in (3.10) or (3.11), once again it involves
hypergeometric functions, in general, and again is not particularly informative. For the particular
casesm = 1 andm = 3 we obtain

t

3M̄
=

[

1

2θ̃2
+

1

θ̃
+ log

θ̃ − 1

θ̃

]θ0

θ

(7.18)

whenm = 1,

t

3M̄
=

[

(2θ̃ − 1)(6θ̃2 − 6θ̃ − 1)

2(θ̃ − 1)2θ̃2
+ 6 log

θ̃ − 1

θ̃

]θ0

θ

(7.19)

whenm = 3 in (3.10), and

t

3M̄
=

[

1

2θ̃2
− 1√

3
tan−1 2θ̃ + 1√

3
+

1

6
log

(θ̃ − 1)2

θ̃2 + θ̃ + 1

]θ0

θ

(7.20)
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whenm = 3 in (3.11). Also in the limitt→ ∞,

|θ − 1| ∼
(

3M̄

(m− 1)t

)

1

m−1

→ 0 (7.21)

whenm > 1 in (3.10), and

θ − 1 ∝ exp
(

− m

3M̄
t
)

→ 0 (7.22)

whenm = 1 in (3.10) orm > 1 in (3.11); thus again the ridge approaches its final state
exponentially for all values ofm with Tanner law (3.11) and form = 1 with (3.10), but according
to a power law form > 1 with (3.10).

7.4 The special case G = 0 when M 6= 0

In the zero-gravity caseG = 0 whenM 6= 0 we are unable to find an explicit expression for the
free-surface profile (unlike in the caseM = 0 whenG 6= 0 studied by Ehrhard and Davis (3)).
However, we can still make useful progress analytically.

WhenM 6= 0 andθ 6= 0 we may simplify the integrals in (3.7) and (3.8) by defining a new
parameterξ = ξ(t) by

ξ =
Mhm

θ2
. (7.23)

This allows us to writeF in (3.6) as

F (s) = θ2F0(s), F0(s) = 1 − s− 3ξs log s. (7.24)

Then (3.7), (3.8) and (7.23) givehm, a andθ parametrically in terms ofξ:

hm =

(

M

4

)
1
3

ξ K(ξ)2, a =

(

1

2M

)
1
3

L(ξ), θ =

(

M2

2

)
1
3

K(ξ), (7.25)

and from (3.5) the free-surface profile is given implicitly by

x =
hm

θ

∫ 1

h/hm

ds

[F0(s)]
1
2

, (7.26)

where we have definedK = K(ξ) andL = L(ξ) by

K(ξ) =

(

ξ2
∫ 1

0

s ds

[F0(s)]
1
2

)− 1
3

, L(ξ) = ξK(ξ)

∫ 1

0

ds

[F0(s)]
1
2

. (7.27)

Figure 12 shows plots of the functionsK(ξ) andL(ξ), both of which are real only forξ ≥ − 1

3
; we

note, in particular, thatK(ξ) ≥ 0 for all ξ, and that bothξ andL(ξ) have the same sign asM . For
M < 0 the functionK(ξ) increases monotonically from 0 atξ = − 1

3
to ∞ asξ → 0−, and for

M > 0 it decreases monotonically from∞ asξ → 0+ to 0 asξ → ∞; for M < 0 the function
L(ξ) increases monotonically from−∞ asξ → − 1

3

+
to 0 asξ → 0−, and forM > 0 it increases

monotonically from 0 asξ → 0+ to (2π/
√

3)1/3 (≃ 1.53653) asξ → ∞, passing through the value
0 with infinite slope whenξ = 0.



28 G. J. DUNNet al.

ξ

K

− 1

3

(a)

0.5 1.0 1.5 2.0 2.5

3

2

1

ξ

L

− 1

3

(b)

0.5 1.0 1.5 2.0 2.5

−3

−2

−1

1

Fig. 12 Plots of the functionsK(ξ) andL(ξ) in (7.27) relevant to the solution in the special caseG = 0 when
M 6= 0 described in section 7.4.
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Substituting (7.25) into the Tanner law (3.9) we obtain the evolution equation forξ(t):

dξ

dt
=

(2M)
1
3

L′(ξ)
U
(

(1

2
M2)

1
3K(ξ)

)

(7.28)

with U given by (3.10) or (3.11). This is to be integrated subject tothe initial conditionξ(0) = ξ0,
where the constantξ0 is the (unique) solution of

K(ξ0) =

(

2

M2

)
1
3

θ0. (7.29)

Thus, finally, the implicit solution forξ(t) is

(2M)
1
3 t =

∫ ξ

ξ0

L′(ξ̃) dξ̃

U
(

(1

2
M2)

1
3K(ξ̃)

) , (7.30)

and then the corresponding solutions for the physical quantities hm, a andθ are given by (7.25).
Figure 13 shows plots of the evolutions ofθ anda for Tanner law (3.10) withm = 3 andθ0 = 2
for various values ofM ; these correspond to case (i) in Fig. 5. In each case bothθ anda vary
monotonically witht, and from Fig. 13(b) it is again clear that cooling the substrate (M < 0)
enhances spreading whereas heating the substrate (M > 0) reduces spreading.

It is worthwhile considering this solution in various asymptotic limits.
In the limit ξ → 0, corresponding physically to the limitM → 0, the integrals in (7.27) are

dominated by global contributions with integrandss1/2(1 − s)−1/2 and(1 − s)−1/2, respectively;
thus we find that

K ∼
(

3

4ξ2

)
1
3

→ ∞, L ∼ (6ξ)
1
3 → 0 (7.31)

and therefore from (7.25) and (7.26) that

hm ∼ 1

4

(

9M

ξ

)
1
3

→ ∞, a ∼
(

3ξ

M

)
1
3

→ 0, θ ∼ 1

2

(√
3M

ξ

)
2
3

→ ∞ (7.32)

asξ → 0, so that the results (7.1) and (7.2) are recovered at leadingorder.
In the limit ξ → ∞, corresponding physically to the limitM → ∞, the integrals in (7.27)

are dominated by global contributions with integrandss1/2(−3ξ log s)−1/2 and(−3ξs log s)−1/2,
respectively; thus we find that

K ∼
(

3√
2π

)
1
3 1

ξ
1
2

→ 0, L→
(

2π√
3

)
1
3

(7.33)

asξ → ∞, and so from (7.25) and (7.26) the results (7.10) and (7.11) are recovered at leading order.
For the integrals in (7.27) to be real and for the singularities ass → 1 in them to be integrable it

is necessary thatξ > − 1

3
. It is found that in the limitξ → − 1

3

+
, corresponding physically to the

limit M → −∞, both integrals are dominated by local contributions ass→ 1, leading to

K ∼
(

− 9√
2ℓ

)
1
3

→ 0, L ∼ −
(

2ℓ2

3

)

1
3

→ −∞ (7.34)
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Fig. 13 Plots of the evolution ofθ anda for Tanner law (3.10) withm = 3 andθ0 = 2 in the casesM = −3,
−2, −1, 0, 1, 2 and3 in the special caseG = 0 whenM 6= 0 described in section 7.4.
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asξ → − 1

3

+
, whereℓ, defined byℓ = log(1 + 3ξ), satisfiesℓ → −∞ asξ → − 1

3

+
. Therefore

from (7.25) and (7.26)

hm ∼ 1

2

(

−3M

ℓ2

)
1
3

→ 0, a ∼
(

− ℓ2

3M

)
1
3

→ ∞, θ ∼ 1√
2

(

−9M2

ℓ

)
1
3

→ 0 (7.35)

and hence (7.14) is recovered at leading order.
WhenM 6= 0 andθ = 0 we find from (3.5), (3.7) and (3.8) that

hm =

(

9M

8π

)
1
3

, a =

(

π√
3M

)
1
3

, h = hm exp

(

−2
[

erf−1
(x

a

)]2
)

(7.36)

(cf (7.10) and (7.11)). Ehrhard and Davis (3, eqs 7.5p, 7.6p) showed that forθ = G = 0, a is given
by

a3M = k3 (7.37)

for all values ofM (> 0), wherek was found numerically to be approximately 1.22; our result
(7.36) shows thatk = (π/

√
3)1/3 ≃ 1.2195, confirming the accuracy of the numerical value given

by Ehrhard and Davis (3).

7.5 A sessile ridge in the limit of strong gravity, G→ ∞
For a sessile ridge in the limit of strong gravity,G → ∞, equation (3.7) can be satisfied only if
C1 → 0 andhm = O(G−1/2), leading tohm ∼ H , whereH is as defined in (7.13). Expanding this
in the limitG→ ∞ and using (3.14) we find that

hm ∼ H ∼ θ

G
1
2

+
3M

2G
→ 0, a ∼ G

1
2

2θ
− 3M

4θ2
→ ∞ (7.38)

asG → ∞, showing that the ridge becomes shallow and wide in this limit. Moreover (3.5) shows
that the free-surface profile is flat, withh ∼ hm except in a thin boundary layer nearx = a.

Substituting fora from (7.38) into the Tanner law (3.9) we obtain at leading order

dθ

dt
= − 2

G
1
2

θ2 U(θ), (7.39)

showing thatθ is again a monotonic function oft. The implicit solution of (7.39) is

2t

G
1
2

=

∫ θ0

θ

dθ̃

θ̃2 U(θ̃)
. (7.40)

Although the integral here may again be evaluated for allm > 1, once again it involves
hypergeometric functions, in general, and is not particularly informative. For the particular cases
m = 1 andm = 3 we obtain

2t

G
1
2

=

[

1

θ̃
+ log

θ̃ − 1

θ̃

]θ0

θ

(7.41)

whenm = 1,

2t

G
1
2

=

[

6θ̃2 − 9θ̃ + 2

2θ̃(θ̃ − 1)2
+ 3 log

θ̃ − 1

θ̃

]θ0

θ

(7.42)
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whenm = 3 in (3.10), and

2t

G
1
2

=

[

1

θ̃
+

1√
3

tan−1 2θ̃ + 1√
3

+
1

6
log

(θ̃ − 1)2

θ̃2 + θ̃ + 1

]θ0

θ

(7.43)

whenm = 3 in (3.11). In the limitt→ ∞,

|θ − 1| ∼
(

G
1
2

2(m− 1)t

)

1

m−1

→ 0 (7.44)

whenm > 1 in (3.10), and

θ − 1 ∝ exp

(

−2m

G
1
2

t

)

→ 0 (7.45)

whenm = 1 in (3.10) orm > 1 in (3.11); thus once again the ridge approaches its final state
exponentially for all values ofm with Tanner law (3.11) and form = 1 with (3.10), but according
to a power law form > 1 with (3.10).

7.6 A pendent ridge in the limit of strong gravity, G→ −∞
For a pendent ridge in the limit of strong gravity,Ḡ = −G → ∞, equation (3.7) can be satisfied
only if the solution forhm satisfieshm → ∞. Then the integrals in (3.5)–(3.8) are dominated by
global contributions with integrandss1/2((1− s)Ḡh2

m)−1/2 and(s(1− s)Ḡh2
m)−1/2, respectively;

we thus find at leading order thathm anda are given by

hm ∼
√
Ḡ

π
→ ∞, a ∼ π√

Ḡ
→ 0 (7.46)

asḠ → ∞, showing that the ridge becomes deep and narrow in this limit. Moreover (3.5) shows
that the free-surface profile is given by

h ∼ hm cos2
(πx

2a

)

. (7.47)

Proceeding to higher order yields

hm =

√
Ḡ

π
+

3M(2 − log 4)

Ḡ
+O

(

1

Ḡ3/2

)

, a =
π√
Ḡ

− 3π2M

Ḡ2
+O

(

1

Ḡ5/2

)

(7.48)

asḠ → ∞. We conclude that, to the orders given,a andhm are independent ofθ, and hence oft,
so that the free surface of the ridge is stationary (though there is still fluid motion in the ridge). It
would be necessary to go to higher order inḠ in order to determine the evolution of the ridge from
the Tanner law (3.9); again we do not pursue this here.

8. Conclusions

We investigated the problem of the quasi-steady spreading or contraction of a thin two-dimensional
sessile or pendent ridge of incompressible Newtonian fluid on a uniformly heated or cooled planar
horizontal substrate when thermocapillary effects are significant.
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We took as our starting point the widely cited paper on this problem by Ehrhard and Davis (3), in
which the non-linear differential equation governing the evolution of the free-surface profile of the
ridge (a special case of a more general evolution equation first derived by Burelbachet al. (2)) was
studied numerically and asymptotically in the limits of small M and of larget.

Adapting the methods used by Hollandet al. (15) to analyze a mathematically similar but
physically different problem, we obtained the (implicit) exact solution of this governing thin-film
equation in the quasi-steady case, and used this solution toexamine the quasi-steady evolution of
the ridge, the dynamics of the moving contact lines being modelled by a Tanner law relating the
velocity of the contact line to the contact angle.

This approach via an implicit solution, which is very different from the approach used by Ehrhard
and Davis (3), provides a relatively simple means of obtaining a complete description of the (rather
rich) variety of possible forms of behaviour of the ridge. Inparticular, we demonstrated that there
are essentially nine different forms that the evolution of the ridge may take, as summarized in Fig.
5. In simpler cases the contact angleθ varies monotonically with timet, and the ridge evolves to
a unique (stable) final state. However, in other cases (thoserepresented by sigmoid or bi-sigmoid
curves in Fig. 5)θ may vary non-monotonically witht; also there may again be just one stable
final state, but there may instead be two stable final states and one unstable one, or as many as three
stable final states. The example in Fig. 9 with three different solutions for the final state of a pendent
ridge on an appropriately cooled substrate demonstrates the qualitatively different forms that these
solutions may take.

It was found that in some cases the ridge may evolve via a statefrom which the quasi-steady
motion cannot persist, and so there may be an instantaneous ‘jump’ in the value of the contact angle
(with the position of the contact line unaffected), after which quasi-steady motion is resumed.

We investigated the behaviour of the ridge in the asymptoticlimits of strong heating of the
substrate (M → ∞), in which case the ridge is narrow and deep, with a stationary profile at leading
order, and of strong cooling of the substrate (M → −∞), in which case the ridge is shallow
and wide. Also, in the case of weak heating or cooling of the substrate (M → 0) we showed
that spreading is reduced or enhanced, respectively, in agreement with the general conclusions of
Ehrhard and Davis (3). In the case of zero gravity (G = 0) we obtained the general (implicit)
solution for the evolution, and in the limit of strong gravity we showed that a sessile ridge (G→ ∞)
is shallow and wide, but that a pendent ridge (G→ −∞) is deep and narrow, as expected.
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APPENDIX A
The perfectly wetting case θ∞ = 0

In this Appendix we consider the perfectly wetting case, that is, the case in whichθ∞ = 0. In the final state
in this case,θ takes the valueθ = θ∞ = 0. Therefore ifθ0 = 0 then the ridge is in its final state att = 0, and
will not move thereafter; we therefore takeθ0 6= 0.

With θ∞ = 0 we cannot useθ∞ to scale variables in (2.15); however, we may use the scalings that are
obtained from (2.15) by replacingθ∞ by θ0. Then all of the analysis in§§2–6 remains valid provided thatθ∞
is replaced byθ0, that the initial condition onθ is replaced byθ(0) = 1, and that velocities (3.10) and (3.11)
in the Tanner law (3.9) are replaced byU(θ) = θm.

In the special case of negligible gravity and thermocapillarity effects,G = M = 0, equation (7.4) leads to

θ =

(

1 +

√

2

3
(2m+ 1) t

)− 2

2m+1

, (A.1)

andhm, a andh are given by (7.1) and (7.2), showing that the ridge spreads indefinitely ast→ ∞, becoming
ever wider and thinner, in agreement with the analysis of Ehrhard and Davis (3, §6 (Case 3)).

At leading order in the limit of strong heating of the substrate,M → ∞, hm, a andh are given by (7.10)
and (7.11); thusa is independent ofθ and hence oft, and so the free surface is stationary.

At leading order in the limit of strong cooling of the substrate,M → −∞, equation (7.16) yields

θ =

(

1 +
m+ 2

3M̄
t

)− 1

m+2

, (A.2)

andhm anda are given byhm ∼ θ2/3M̄ anda ∼ 3M̄/2θ2, showing that, once again, the ridge spreads
indefinitely ast→ ∞.

For a sessile ridge in the limit of strong gravity,G→ ∞, equation (7.39) yields

θ =

(

1 +
2(m+ 1)√

G
t

)− 1

m+1

, (A.3)

andhm anda are given byhm ∼ θ/
√
G anda ∼

√
G/2θ, showing that, once again, the ridge spreads

indefinitely ast→ ∞.
For a pendent ridge in the limit of strong gravity,G → −∞, hm, a andh are given by (7.46) and (7.47);

thusa is independent ofθ and hence oft, and so the free surface is stationary.
Lastly we consider briefly the final state (so thatθ = 0) in the case in which the ridge does not spread

indefinitely (that is,a∞ is finite). Withθ = 0 it is found thatF in (3.6) satisfiesF ∼ −3Mhms log s+O(s)
ass → 0, and so physically relevant solutions are possible only whenM > 0. Figure A shows the maximum
heighthm∞ and the semi-widtha∞ in the final equilibrium state, computed from (3.7) and (3.8)with θ = 0,
as functions of the Marangoni numberM for selected values ofG. The plot ofa∞ for the caseG = 0 is in
agreement with the corresponding plot given by Ehrhard and Davis (3, Fig. 8(a)). Clearly heating the substrate
(increasingM ) has the effect of reducing spreading.
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Fig. A Plots of the maximum heighthm∞ and semi-widtha∞ in the final equilibrium state, as functions of
the Marangoni numberM for G = −10, −5, 0, 5 and10, with θ = 0, in the perfectly wetting caseθ∞ = 0
described in Appendix A.
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APPENDIX B
The solution in the limit of weak heating or cooling, M → 0

The solution in the limit of weak heating or cooling of the substrate (M → 0) is perhaps most easily
obtained by expandingh, a, θ andhm in powers ofM in the form†

h = h0 +Mh1 +O(M2), a = a0 +Ma1 +O(M2),

θ = Θ0 +MΘ1 +O(M2), hm = hm0 +Mhm1 +O(M2),
(B.1)

and substituting these expansions directly into the differential equation (2.33), the boundary conditions (2.10)
atx = 0 and (2.25) atx = a, and the area condition (2.11), and then solving the problemthat emerges at each
order inM . At leading order this yields the third-order differentialequation

(h0xx −Gh0)x = 0, (B.2)

to be solved subject to the boundary conditions

h0x(0) = 0, h0(a0) = 0, h0x(a0) = −Θ0, (B.3)

together with the leading-order area condition

1 = 2

∫ a0

0

h0 dx. (B.4)

The solution is

h0 =
Θ0 (cosh

√
Ga0 − cosh

√
Gx)√

G sinh
√
Ga0

, hm0 =
Θ0√
G

tanh

√
Ga0

2
, Θ0 =

G

2(
√
Ga0 coth

√
Ga0 − 1)

(B.5)
for G > 0, and

h0 =
Θ0

2a0

(a2
0 − x2), hm0 =

Θ0a0

2
, Θ0 =

3

2a2
0

(B.6)

for G = 0. (For the sake of brevity, expressions relevant to the caseG < 0 analogous to those for the
caseG > 0 are omitted from this Appendix.) The expressions in (B.5) and (B.6) are in agreement with the
corresponding ones given by Ehrhard and Davis (3, §6), who discuss the leading order solution in some detail.
At first order inM equation (2.33) gives

(h1xx −Gh1)x +
3h0x

2h0

= 0, (B.7)

to be solved subject to the boundary conditions

h1x(0) = 0, h1(a0) = a1Θ0, h1x(a0) + a1h0xx(a0) = −Θ1, (B.8)

together with the first-order area condition
∫ a0

0

h1 dx = 0. (B.9)

After considerable algebra we obtain

h1 = a1

{

Θ0 −
√
Gh0 coth

√
Ga0

}

+
Θ1

Θ0

h0 +
3

2G

[√
Gx sinh

√
Gx cosh

√
Ga0

+ (s+ + s−)
{

2 log(sinh
√
Ga0) −

√
Ga0 coth

√
Ga0

}

− s+ log s+ − s− log s−
]

(B.10)

† TheΘ0 here is not to be confused with the initial valueθ0 = θ(0).
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for G > 0, wheres± = sinh2
[

1

2

√
G(a0 ± x)

]

. In the caseG = 0 we obtain

h1 =
a1Θ0

2a2
0

(a2
0 + x2) +

Θ1

2a0

(a2
0 − x2) +

3

4

{

2(a2
0 + x2) log(2a0) − (a2

0 − x2)

−(a0 + x)2 log(a0 + x) − (a0 − x)2 log(a0 − x)
}

,

(B.11)

which differs slightly from the corresponding expression obtained by Ehrhard and Davis (3, eq. (7.2p)) because
we have included perturbations toa andθ in addition to the perturbation toh; however, both solutions are
correct up to terms of orderM2. The area condition (B.9) gives the relationship betweenΘ1, a0 anda1,
namely

Θ1 = − 3a0

2
− 3a0Θ0

G

[√
Ga0 + 2 − 2 log

(

2 sinh
√
Ga0

)]

+
Θ0

2G
3
2

[

π2 − 6 Li2
(

exp(−2
√
Ga0)

)]

+ a1

(

Θ0

a0

+
G

2a0

− 2Θ2
0√
G

) (B.12)

for G > 0, where Li2 is the dilogarithm function. In the caseG = 0 we obtain

Θ1 = −
(

3a1

a3
0

+
a0

2

)

. (B.13)

Also the Tanner law gives
da0

dt
= U(Θ0),

da1

dt
= Θ1U

′(Θ0), (B.14)

to be integrated subject to the initial conditionsΘ0(0) = θ0 andΘ1(0) = 0. For example, in the caseG = 0
equation (B.14) with (B.6c) and (B.13) leads to

dΘ0

dt
= −

(

8

3

) 1
2

Θ
3
2

0 U(Θ0),
dΘ1

dΘ0

−

[

Θ
3
2

0 U(Θ0)
]′

Θ
3
2

0 U(Θ0)
Θ1 =

(

3

2Θ3
0

) 1
2

, (B.15)

so that the implicit solutions forΘ0 andΘ1 are

(

8

3

)
1
2

t =

∫ θ0

Θ0

dΘ̃0

Θ̃
3
2

0 U(Θ̃0)
, Θ1 =

(

3

2

)
1
2

Θ
3
2

0 U(Θ0)

∫

Θ0

θ0

dΘ̃0

Θ̃3
0 U(Θ̃0)

, (B.16)

the former in agreement with (7.4). SinceU(Θ0) has the same sign asΘ0 − 1, equation (B.15a) shows that
Θ0 is a monotonic function oft, increasing in the caseθ0 < 1 and decreasing in the caseθ0 > 1. Also
equation (B.16b) then shows that ifθ0 < 1 thenΘ1(t) > 0 for all t, whereas ifθ0 > 1 thenΘ1(t) < 0
for all t. Moreover, in the former case equation (B.13) gives immediately a1(t) < 0 for all t, whereas in the
latter case either of the Tanner laws (3.10) or (3.11) leads to da1/dt < 0, which with the initial condition
a1(0) = −a0(0)

4/6 (< 0) shows that, once again,a1(t) < 0 for all t. Thus we may conclude that, compared
to the isothermal case (M = 0), weak heating of the substrate (M → 0+) has the effect of reducing spreading,
and conversely weak cooling of the substrate (M → 0−) has the effect of enhancing spreading.


