945 research outputs found
Relativistic dust disks and the Wilson-Mathews approach
Treating problems in full general relativity is highly complex and frequently
approximate methods are employed to simplify the solution. We present
comparative solutions of a infinitesimally thin relativistic, stationary,
rigidly rotating disk obtained using the full equations and the approximate
approach suggested by Wilson & Mathews. We find that the Wilson-Mathews method
has about the same accuracy as the first post-Newtonian approximation.Comment: 4 Pages, 5 eps-figures, uses revtex.sty. Submitted to PR
Gauge conditions for binary black hole puncture data based on an approximate helical Killing vector
We show that puncture data for quasicircular binary black hole orbits allow a
special gauge choice that realizes some of the necessary conditions for the
existence of an approximate helical Killing vector field. Introducing free
parameters for the lapse at the punctures we can satisfy the condition that the
Komar and ADM mass agree at spatial infinity. Several other conditions for an
approximate Killing vector are then automatically satisfied, and the 3-metric
evolves on a timescale smaller than the orbital timescale. The time derivative
of the extrinsic curvature however remains significant. Nevertheless,
quasicircular puncture data are not as far from possessing a helical Killing
vector as one might have expected.Comment: 11 pages, 6 figures, 2 table
Comparing Criteria for Circular Orbits in General Relativity
We study a simple analytic solution to Einstein's field equations describing
a thin spherical shell consisting of collisionless particles in circular orbit.
We then apply two independent criteria for the identification of circular
orbits, which have recently been used in the numerical construction of binary
black hole solutions, and find that both yield equivalent results. Our
calculation illustrates these two criteria in a particularly transparent
framework and provides further evidence that the deviations found in those
numerical binary black hole solutions are not caused by the different criteria
for circular orbits.Comment: 4 pages; to appear in PRD as a Brief Report; added and corrected
reference
Relativistic Models for Binary Neutron Stars with Arbitrary Spins
We introduce a new numerical scheme for solving the initial value problem for
quasiequilibrium binary neutron stars allowing for arbitrary spins. The coupled
Einstein field equations and equations of relativistic hydrodynamics are solved
in the Wilson-Mathews conformal thin sandwich formalism. We construct sequences
of circular-orbit binaries of varying separation, keeping the rest mass and
circulation constant along each sequence. Solutions are presented for
configurations obeying an n=1 polytropic equation of state and spinning
parallel and antiparallel to the orbital angular momentum. We treat stars with
moderate compaction ((m/R) = 0.14) and high compaction ((m/R) = 0.19). For all
but the highest circulation sequences, the spins of the neutron stars increase
as the binary separation decreases. Our zero-circulation cases approximate
irrotational sequences, for which the spin angular frequencies of the stars
increases by 13% (11%) of the orbital frequency for (m/R) = 0.14 ((m/R) = 0.19)
by the time the innermost circular orbit is reached. In addition to leaving an
imprint on the inspiral gravitational waveform, this spin effect is measurable
in the electromagnetic signal if one of the stars is a pulsar visible from
Earth.Comment: 21 pages, 14 figures. A few explanatory sentences added and some
typos corrected. Accepted for publication in Phys. Rev.
Conformal-thin-sandwich initial data for a single boosted or spinning black hole puncture
Sequences of initial-data sets representing binary black holes in
quasi-circular orbits have been used to calculate what may be interpreted as
the innermost stable circular orbit. These sequences have been computed with
two approaches. One method is based on the traditional
conformal-transverse-traceless decomposition and locates quasi-circular orbits
from the turning points in an effective potential. The second method uses a
conformal-thin-sandwich decomposition and determines quasi-circular orbits by
requiring the existence of an approximate helical Killing vector. Although the
parameters defining the innermost stable circular orbit obtained from these two
methods differ significantly, both approaches yield approximately the same
initial data, as the separation of the binary system increases. To help
understanding this agreement between data sets, we consider the case of initial
data representing a single boosted or spinning black hole puncture of the
Bowen-York type and show that the conformal-transverse-traceless and
conformal-thin-sandwich methods yield identical data, both satisfying the
conditions for the existence of an approximate Killing vector.Comment: 13 pages, 2 figure
SS Cancri: the shortest modulation-period Blazhko RR Lyrae
In order to study the Blazhko effect, we characterise the modulation of the RR Lyrae star SS Cancri,
which has been reported to have the shortest modulation Blazhko period. B, V and R band data have been acquired.
The pulsation period is 0.36731 +- 0.00004 d. No significant change in the period over the last 80 years is observed.
We measure a periodic variation in the light curve maxima, which has a period of 5.313 +- 0.018 d and an amplitude
of 0.016 +- 0.003 mag. The best model that describes the Blazhko effect is the resonance coupling between a low
and a high order radial mode
Can a combination of the conformal thin-sandwich and puncture methods yield binary black hole solutions in quasi-equilibrium?
We consider combining two important methods for constructing
quasi-equilibrium initial data for binary black holes: the conformal
thin-sandwich formalism and the puncture method. The former seeks to enforce
stationarity in the conformal three-metric and the latter attempts to avoid
internal boundaries, like minimal surfaces or apparent horizons. We show that
these two methods make partially conflicting requirements on the boundary
conditions that determine the time slices. In particular, it does not seem
possible to construct slices that are quasi-stationary and avoid physical
singularities and simultaneously are connected by an everywhere positive lapse
function, a condition which must obtain if internal boundaries are to be
avoided. Some relaxation of these conflicting requirements may yield a soluble
system, but some of the advantages that were sought in combining these
approaches will be lost.Comment: 8 pages, LaTeX2e, 2 postscript figure
Spin- and charge-density oscillations in spin chains and quantum wires
We analyze the spin- and charge-density oscillations near impurities in spin
chains and quantum wires. These so-called Friedel oscillations give detailed
information about the impurity and also about the interactions in the system.
The temperature dependence of these oscillations explicitly shows the
renormalization of backscattering and conductivity, which we analyze for a
number of different impurity models. We are also able to analyze screening
effects in one dimension. The relation to the Kondo effect and experimental
consequences are discussed.Comment: Final published version. 15 pages in revtex format including 22
epsf-embedded figures. The latest version in PDF format is available from
http://fy.chalmers.se/~eggert/papers/density-osc.pd
Plasmonic excitations in noble metals: The case of Ag
The delicate interplay between plasmonic excitations and interband
transitions in noble metals is described by means of {\it ab initio}
calculations and a simple model in which the conduction electron plasmon is
coupled to the continuum of electron-hole pairs. Band structure effects,
specially the energy at which the excitation of the -like bands takes place,
determine the existence of a subthreshold plasmonic mode, which manifests
itself in Ag as a sharp resonance at 3.8 eV. However, such a resonance is not
observed in the other noble metals. Here, this different behavior is also
analyzed and an explanation is provided.Comment: 9 pages, 8 figure
- …