17 research outputs found

    Reading in Criminology for Pleasure and Perspective

    Get PDF

    Reading in Criminology for Pleasure and Perspective

    Get PDF

    Sustainable Social-Ecological Systems: An Impossibility?

    No full text

    A Selective Bibliography on Social Welfare in the People's Republic of China

    No full text

    Discourse and Semantics

    No full text

    Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility, and BRCA1-mediated DNA repair [editorial comment]

    No full text
    ABSTRACT: Menopause timing has a major impact on infertility and risk of disease. Younger age at natural (nonsurgical) menopause (ANM) is associated with a higher risk of osteoporosis, cardiovascular disease, and type 2 diabetes and a lower risk of breast cancer. Late menopause is associated with a higher risk of breast cancer. It is well known that the age at which women go through menopause is partly determined by genes, but the underlying mechanisms are poorly understood. Genome-wide association studies have identified 18 common genetic variants associated with ANM. These variants explain less than 5% of the variation in ANM compared with the 21% explained by all common variants on genome-wide association study arrays. This genome-wide association study was the collaborative effort of researchers from 177 institutions worldwide. The study was designed to investigate genetic variants associated with timing of menopause among a population of approximately 70,000 women of European ancestry. A dual strategy was used to identify both common and, for the first time, low-frequency coding variants associated with ANM. The causal relationship between ANM and breast cancer was investigated using a Mendelian randomization approach. Combined analysis identified 1208 single-nucleotide polymorphisms (SNPs) of a total of approximately 2.6 million that reached the genome-wide significance threshold for association with ANM. Forty-four regions with common variants were identified; among these 44 loci were 2 rare low-frequency missense alleles of large effect. A majority of ANM SNPs were enriched in DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal relationship between delayed ANM and breast cancer risk; there was approximately 6% increase in risk per year; P = 3 × 10-14); increased risk with delayed menopause appeared to be mediated primarily by prolonged sex hormone exposure in a woman’s lifetime, not DDR mechanisms. This is the first study to confirm the link between early and late menopause and breast cancer risk using genetic information. Age at natural menopause genetic variants influence breast cancer risk primarily through variation in menopause timing. Although carrying higher numbers of ANM-increasing variants and enrichment in DDR genes are associated with a modest increase in breast cancer risk, the major mechanism for increased risk appears to be prolonged estrogen and/or progesterone exposure due to delayed menopause

    Genetic insights into biological mechanisms governing human ovarian ageing.

    Get PDF
    Reproductive longevity is essential for fertility and influences healthy ageing in women <sup>1,2</sup> , but insights into its underlying biological mechanisms and treatments to preserve it are limited. Here we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in about 200,000 women of European ancestry. These common alleles were associated with clinical extremes of ANM; women in the top 1% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations <sup>3</sup> . The identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR-associated genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increases fertility and extends reproductive life in mice. Causal inference analyses using the identified genetic variants indicate that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases the risk of hormone-sensitive cancers. These findings provide insight into the mechanisms that govern ovarian ageing, when they act, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease
    corecore