26 research outputs found

    Pharmacists Role in Preventing Drug Abuse

    Get PDF
    In 2019, there were approximately 332,000 pharmacists active in the US workforce, Data USA, 2019. A survey of 1,700 American adults, discovered, that 34% of Americans still rely on healthcare providers such as pharmacists, for information in relation their health, KRC Research, 2018. Pharmacists are one of the three most trusted health care professions and were found to be the second most trusted source for health information by Americans in 2005. Blendon et al., 2006 found, that information from pharmacist was trusted by 67%, of participants in their survey. One of the oaths pledged by pharmacist is, ‘I will apply my knowledge, experience, and skills to the best of my ability to assure optimal outcomes for all patients,’ AACP Board of Directors and the APhA Board of Trustees, 2021. In recent times however, this begs to question, is the goal still optimal outcomes for patients, or optimal outcomes for sustained revenues? The average American visits their pharmacy 775% more times, than their primary health care provider. It is quite alarming though, that pharmacists spend on average only 10% of their days with their patients, Gebhart, 201

    Exploring experiences and impact of the COVID-19 pandemic on young racially minoritised people in the United Kingdom: A qualitative study

    Get PDF
    Within high-income-countries, the COVID-19 pandemic has disproportionately impacted people from racially minoritised backgrounds. There has been significant research interrogating the disparate impact of the virus, and recently, interest in the long-term implications of the global crisis on young people's mental health and wellbeing. However, less work explores the experiences of young people from racialised backgrounds as they navigate the pandemic, and the specific consequences this has for their mental health. Forty young people (age 16-25) from Black, mixed and other minority backgrounds and living in London, participated in consecutive focus group discussions over a two-month period, to explore the impact of the pandemic on their lives and emotional wellbeing. Thematic analysis identified seven thematic categories describing the impact of the pandemic, indicating: deepening of existing socioeconomic and emotional challenges; efforts to navigate racism and difference within the response; and survival strategies drawing on communal and individual resources. Young people also articulated visions for a future public health response which addressed gaps in current strategies. Findings point to the need to contextualize public health responses to the pandemic in line with the lived experiences of racialised young people. We specifically note the importance of long-term culturally and socio-politically relevant support interventions. Implications for policy and practice are discussed

    Identification of an allosteric binding site on the human glycine transporter, GlyT2, for bioactive lipid analgesics

    Get PDF
    The treatment of chronic pain is poorly managed by current analgesics, and there is a need for new classes of drugs. We recently developed a series of bioactive lipids that inhibit the human glycine transporter GlyT2 (SLC6A5) and provide analgesia in animal models of pain. Here, we have used functional analysis of mutant transporters combined with molecular dynamics simulations of lipid-transporter interactions to understand how these bioactive lipids interact with GlyT2. This study identifies a novel extracellular allosteric modulator site formed by a crevice between transmembrane domains 5, 7, and 8, and extracellular loop 4 of GlyT2. Knowledge of this site could be exploited further in the development of drugs to treat pain, and to identify other allosteric modulators of the SLC6 family of transporters.National Health and Medical Research Council APP1144429 Tristan Rawling Renae M Ryan Megan L O’Mara Robert J Vandenbe

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Enhancing Hydrogels with Quantum Dots

    No full text
    This manuscript explores the interdisciplinary integration of quantum dot–hydrogel composites and smart materials and their applications across a spectrum of fields, including biomedical engineering, environmental sensing, and energy harvesting. It covers the synthesis of novel materials like fluorescent hydrogel nanocomposites that display enhanced chemical stability, mechanical strength, and thermal resistance, highlighting their utility in environmental monitoring and catalysis. In the biomedical sector, innovations include hydrogel composites for targeted drug delivery and advanced therapies such as photothermal DNA hydrogels for tumor treatment. This review also discusses the application of these materials in imaging, diagnostics, and the development of smart sensors capable of detecting various biological and environmental changes. Its scope further extends to optoelectronics and the design of energy-efficient systems, underscoring the versatile functionalities of hydrogels in modern technological applications. Challenges remain in scaling up these technologies for commercial use and ensuring their long-term stability and safety, necessitating future research focused on sustainable, scalable solutions that can be integrated into existing systems

    Bioinspired Polymers: Transformative Applications in Biomedicine and Regenerative Medicine.

    No full text
    Bioinspired polymers have emerged as a promising field in biomaterials research, offering innovative solutions for various applications in biomedical engineering. This manuscript provides an overview of the advancements and potential of bioinspired polymers in tissue engineering, regenerative medicine, and biomedicine. The manuscript discusses their role in enhancing mechanical properties, mimicking the extracellular matrix, incorporating hydrophobic particles for self-healing abilities, and improving stability. Additionally, it explores their applications in antibacterial properties, optical and sensing applications, cancer therapy, and wound healing. The manuscript emphasizes the significance of bioinspired polymers in expanding biomedical applications, addressing healthcare challenges, and improving outcomes. By highlighting these achievements, this manuscript highlights the transformative impact of bioinspired polymers in biomedical engineering and sets the stage for further research and development in the field

    Enhancing Therapeutic Efficacy of Curcumin: Advances in Delivery Systems and Clinical Applications.

    No full text
    Curcumin, a potent active compound found in turmeric and Curcuma xanthorrhiza oil, possesses a wide range of therapeutic properties, including antibacterial, anti-inflammatory, antioxidant, and wound healing activities. However, its clinical effectiveness is hindered by its low bioavailability and rapid elimination from the body. To overcome these limitations, researchers have explored innovative delivery systems for curcumin. Some promising approaches include solid lipid nanoparticles, nanomicelle gels, and transdermal formulations for topical drug delivery. In the field of dentistry, curcumin gels have shown effectiveness against oral disorders and periodontal diseases. Moreover, Pickering emulsions and floating in situ gelling systems have been developed to target gastrointestinal health. Furthermore, curcumin-based systems have demonstrated potential in wound healing and ocular medicine. In addition to its therapeutic applications, curcumin also finds use as a food dye, contraception aid, corrosion-resistant coating, and environmentally friendly stain. This paper primarily focuses on the development of gel compositions of curcumin to address the challenges associated with its clinical use
    corecore