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Abstract 

 

Investigation of Corbels Designed According to  

Strut-and-Tie and Empirical Methods  

 

Heather Renae Wilson, M.S.E. 

The University of Texas at Austin, 2017 

 

Supervisor: Oguzhan Bayrak 

 

 Corbels are short, typically shear-controlled, cantilevers that transfer loads to 

columns in structures. Currently, ACI 318-14 provisions allow the structural design of 

shear-controlled corbels through either an empirical design method or the strut-and-tie 

method (STM). The objective of this thesis is to evaluate STM as an independent design 

method for corbels and investigate the differences stemming from the use of STM 

compared with the empirical design method. Four full-scale double-corbel specimens were 

designed, fabricated, and tested at Ferguson Structural Engineering Laboratory. Two 

specimens were designed using the empirical method and two specimens were designed 

using STM, with and without crack-control reinforcement. Measured load-carrying 

capacities exceeded the capacities calculated using STM for all specimens, and no signs of 

premature failure were observed in the corbel detailed merely based on STM. The results 

of this study suggest that STM can be used independently for corbels and the empirical 

detailing requirements specific to corbels might not be necessary when using STM.  
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CHAPTER 1. INTRODUCTION 

1.1 OVERVIEW 

Corbels are short, typically shear-controlled, cantilevers used to transfer 

concentrated loads to columns in structures. Figure 1-1 shows typical configuration of a 

reinforced concrete corbel and some of the relevant nomenclature. Because of the change 

in geometry and the presence of a concentrated load, corbels demonstrate nonlinear strain 

distribution and are categorized as “discontinuity (D-) regions,” in which the “plane 

sections remain plane” assumption of the flexural theory is not valid (Marti, 1985) and 

(Schlaich et al., 1987). 

 

Figure 1-1. Typical corbel configuration 
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The load-carrying capacity of corbels is governed by a variety of failure modes 

(Kriz & Raths, 1965) and (Park & Paulay, 1975), the most common being yielding of the 

primary reinforcement and crushing of the inclined compression strut. Other failure modes 

include sliding shear at the column-corbel interface and localized failure in the vicinity of 

the bearing plate. In previous studies by Mattock et al. (1976), increased secondary 

reinforcement has been shown to shift the failure mode of corbels toward a beam-shear 

failure behavior, characterized by the widening of cracks throughout the compression strut 

and crushing of the concrete in compression zones. 

ACI 318-14 (2014) provisions allow the design of corbels through two different 

design methodologies. When the shear span-to-depth ratio (av/d) is less than 1, the 

empirical method, found in Chapter 16 of these provisions, can be used for design. On the 

other hand, Chapter 23, the strut-and-tie method, can be used for the design of corbels with 

any av/d ratio less than 2. Therefore, corbels with an av/d less than 1 may be designed using 

either method.  

In the empirical method of corbel design in ACI 318-14, the load-carrying capacity 

of the corbel is calculated at the critical shear plane, i.e. the interface between the column 

and the corbel. The reinforcement in the corbel is designed to provide sufficient sectional 

moment capacity as well as shear-friction resistance at this shear plane. Sectional moment 

capacity is calculated using the flexural theory based on the plane section assumption. 

Shear friction, as a design model, is based on the assumption that shear force is transferred 

across a cracked interface due to friction, which is generated by normal forces that are 
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equivalent to the component of the tensile forces in the reinforcement crossing that 

interface (Birkeland & Birkeland, 1966). According to Section 22.9 of ACI 318-14, if the 

reinforcement is perpendicular to the shear plane, the shear-friction strength is taken as 

𝜇𝐴𝑣𝑓𝑓𝑦, where 𝐴𝑣𝑓 and 𝑓𝑦 are the area and yield strength of reinforcement crossing the 

shear plane, respectively, and 𝜇 is the coefficient of friction, equal to 1.4 in monolithically 

placed concrete.  

For corbels not subjected to horizontal forces, the area of primary reinforcement in 

the empirical method is determined as the greatest of: 1) the area of steel needed to resist 

flexural demands; 2) 2/3 of the area of shear-friction reinforcement; and 3) 

0.04(𝑓𝑐
′/𝑓𝑦)(𝑏𝑤𝑑), where 𝑓𝑐

′ is the compressive strength of concrete, 𝑓𝑦 is the yield strength 

of steel, and 𝑏𝑤 and 𝑑 are the width and effective depth of the corbel, respectively. The 

secondary reinforcement needs to be uniformly distributed over a distance of (2/3)𝑑 from 

the primary reinforcement and must have a total area equal to at least half of the area of 

primary reinforcement if the corbel is not subjected to any horizontal loads. A set of 

dimensional restrictions is also specified in Section 16.5.2.4 of ACI 318-14, which limits 

the total capacity of corbels based on the area of the shear plane. According to these 

provisions, the shear strength of a corbel cannot exceed (𝑘 + 0.08𝑓𝑐
′)𝑏𝑤𝑑 , where 𝑘 is 

equal to 480 if 𝑓𝑐
′ is in psi or 3.3 if 𝑓𝑐

′ is in MPa. 

This legacy method is primarily based on the research by Mattock et al. (1976), 

which involved an experimental study of 28 double-corbel specimens to investigate the 

structural response of corbels under various combinations of vertical and horizontal 
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loading. Results from specimens with a wide range of horizontal reinforcement, loading 

configurations, specimen geometries, and av/d ratios showed that the load-carrying 

capacity of corbels could be estimated as the lesser of the load corresponding to the 

sectional moment capacity of the shear plane and the shear-friction resistance at the column 

face.  

Prior to Mattock et al., another comprehensive experimental study was conducted 

by Kriz and Raths (1965). In this study, 195 full-scale double-corbel specimens were 

investigated to identify the parameters that affect corbel behavior. The variables included 

reinforcement ratio, concrete strength, av/d ratio, amount of secondary reinforcement, 

corbel dimensions, and ratio between horizontal and vertical loading. The findings of this 

research provided major contributions to the detailing practices for corbel reinforcement 

and dimensional restrictions to prevent secondary failures such as splitting of the tip of the 

corbel or bearing failure. In addition to these two comprehensive investigations, Yong et 

al. (1985), Fattuhi (1994), Foster et al. (1996), Fattuhi & Hughes (1989), and Campione et 

al. (2007) have conducted other experimental studies on the behavior of corbels, in which 

the effects of using high-strength or fiber-reinforced concrete in corbels with various 

secondary reinforcement were investigated.  

The strut-and-tie method (STM) is a design tool for reinforced concrete elements 

with origins that date back to 1899 (Ritter, 1899) or earlier. In 1987, Schlaich et al. (1987) 

published a landmark paper that revitalized interest in STM in North America. The 

methodology presented by Schlaich et al. formed the basis for years of extensive research 
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that led to the development of current STM provisions in ACI 318-14. In this method, D-

regions, such as corbels, are designed using hypothetical trusses that transfer forces from 

the location of the concentrated loads to the supports. These trusses are made of 

compressive elements (struts) and tensile elements (ties) that meet at pinned joints (nodes). 

Designing the D-regions according to ACI 318-14 involves providing sufficient capacities 

for struts, ties, and all node faces. The strength of struts is determined based on the 

compressive strength of concrete and a strut coefficient (βs), which depends on whether the 

stresses can spread out in the middle of the strut and whether the strut has sufficient 

distributed reinforcement to control the width of cracks and prevent premature failure (ACI 

Committee 318, 2014). The most common struts are bottle-shaped struts, i.e. struts in 

which the compressive zone can spread out at the mid-length of the strut. According to 

Section 23.5.2 of ACI 318-14, for bottle-shaped struts, if the total area of the distributed 

reinforcement projected in the direction of the strut exceeds 0.30 percent of the cross-

sectional area of the strut, βs is taken as 0.75. Otherwise, βs is equal to 0.60. The strength 

of a tie is dependent on the yield strength and the total area of the reinforcement comprising 

that tie. The compressive strength of each node is determined based on the compressive 

strength of concrete and a nodal zone coefficient, βn, which is taken as 1.0 for nodes with 

no ties (CCC nodes), 0.80 for nodes with one tie (CCT nodes), and 0.60 for nodes with two 

or more ties (CTT nodes).  

The empirical method and the STM design procedure lead to different 

reinforcement and detailing requirements for corbels, especially for the secondary 



6 

 

reinforcement. Generally, the STM provisions provide more flexibility regarding the 

secondary reinforcement and also make it possible to analyze corbels that are not compliant 

with the detailing requirements prescribed by the empirical design provisions. However, 

concerns have been raised regarding potential deficiencies in the behavior of corbels that 

are detailed merely using STM. Moreover, Section 23.2.9 in ACI 318-14 provisions 

requires that when STM is used for designing corbels, the area of primary reinforcement 

be greater than 0.04 (𝑓𝑐
′/𝑓𝑦)(𝑏𝑤𝑑) and some of the requirements of the empirical method, 

i.e. Sections 16.5.2 and Section 16.5.6, remain satisfied. The requirements in Section 16.5.2 

are dimensional limits established in previous research by Mattock et al. (1976) and Kriz 

and Raths (1956) to prevent premature failures due to geometrical insufficiencies. Section 

16.5.6, which covers the detailing of reinforcement, requires that the secondary 

reinforcement be located within (2/3)d. This detailing requirement is not consistent with 

the crack-control reinforcement requirements of STM, which result in evenly distributed 

reinforcement over the entire depth of the member. It is also not clear whether STM can be 

used independently to analyze existing corbels that do not comply with the secondary 

reinforcement requirements of Section 16.5.6.  

Similar to ACI 318-14, AASHTO LRFD Bridge Design Specifications (2016) 

allow the design of shear-controlled corbels using either an empirical method, which is 

almost identical to that in Chapter 16 of ACI 318-14, or STM provisions. However, Article 

5.13.2.4.2 of AASHTO LRFD provisions requires that in corbels designed based on STM, 

the primary and secondary reinforcement areas be greater than those required according to 
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the flexural and shear-friction requirements of the empirical method. These specifications 

clearly discourage the use of STM for corbels, as no benefits can be gained from the use 

of this method in reinforcement area or flexibility of detailing.  

The goal of this thesis is to examine whether strut-and-tie design methodology can 

be used for corbels independently of the empirical design requirements specified in 

Chapter 16 of ACI 318-14. Four full-scale specimens were designed using these two 

methodologies and fabricated at the Ferguson Structural Engineering Laboratory. The 

observed behavior of the specimens under applied loads was evaluated until failure to 

identify differences in behavior due to the use of different secondary reinforcement and the 

necessity of the detailing requirements specified in the empirical method.  

1.2 RESEARCH SIGNIFICANCE 

The two corbel design methods currently available in ACI 318-14 result in different 

reinforcement requirements. Recently, there have been questions regarding the efficacy of 

STM as an independent method for designing corbels, and concerns have been raised 

regarding the necessity of satisfying the legacy requirements of the empirical method when 

using STM. This thesis aims to address these concerns through a comparative experimental 

study on corbels that were designed according to these two methods. The findings of this 

research provide important contributions towards optimizing the use of STM, which leads 

to significant flexibility in the design of new corbels and the analysis of existing ones. 
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1.3 THESIS ORGANIZATION 

This thesis is divided into four chapters, including this introduction. Chapter 2 

describes the experimental program and presents specimen design and fabrication, 

specimen instrumentation, test setup, and test procedures. Chapter 3 provides the results of 

the experimental program along with discussion of the results. Conclusions and further 

research options are given in Chapter 4. Additional details of the test program are provided 

in five appendices, as follows: 

 Appendix A includes detailed information regarding the mechanical 

properties of materials, 

 Appendix B contains cracking patterns observed in the experimental 

program, 

 Appendix C provides strain gage data,  

 Appendix D demonstrates additional information about the experimental 

procedures, and 

 Appendix E includes detailed calculations for estimating the load-carrying 

capacities of the specimens using ACI 318-14 and AASHTO LRFD 

provisions.   
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CHAPTER 2. EXPERIMENTAL PROGRAM 

Four double-corbel specimens, identified herein as C0 through C3, were designed 

based on ACI 318-14 (2014) provisions. The geometry of the specimens and the 

reinforcement detailing used within each specimen are shown in Figure 2-1. All specimens 

shared the same dimensions, with a width of 14 in. (356 mm), a corbel height of 24 in. 

(610 mm), a corbel length of 20 in. (508 mm), and an extended column height of 12 in. 

(305 mm). Note that the specimens in Figure 2-1 are shown in the orientation in which they 

were tested.  
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Figure 2-1. Specimen design with reinforcement detailing 
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To simplify the test setup, the specimens were designed to resist only vertical 

loading, and no horizontal tensile forces were considered in design. The specimens were 

designed to require identical primary reinforcement (four No. 8 bars) but different 

secondary reinforcement depending on the design method used. The design concrete 

strength (f’c) and the yield strength of the reinforcement (fy) were assumed equal to 5 ksi 

(34.5 MPa) and 60 ksi (413.7 MPa), respectively. The design assumptions, expected failure 

modes, and the predicted capacities for the specimens are listed in Table 2-1. 

Table 2-1. Specimen design parameters 

 C0 C1 C2 C3 

Design method Empirical STM Empirical STM 

Shear span-to-depth 

ratio, av/d 
0.66 0.59 

Design capacity, 

kips 
523 421 523 418 

Predicted failure 

mode 
--- 

Yielding of 

AA’ 
--- 

Crushing of 

AB and A’B’ 

Note: 1 in. = 25.4 mm; 1 kip = 4.45 kN. 

 

Specimens C0 and C2 were designed according to the empirical provisions in 

Chapter 16 of ACI 318-14, which require designing the corbels for moment and shear-

friction capacity at the column face. These specimens had identical detailing; however, C0 

was tested at a greater shear span-to-depth (av/d) ratio than all other specimens.  

The secondary reinforcement used in C0 and C2 was detailed according to Articles 

16.5.5.2 and 16.5.6.6 of ACI 318-14. Since no horizontal forces were assumed in design, 

the total area of secondary reinforcement was taken as half of the area of the primary 

reinforcement. The No. 4 bars comprising the secondary reinforcement in these two 
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specimens were uniformly distributed within 2/3 of the effective depth of the corbel at the 

face of the column.  

Specimens C1 and C3 were designed based on STM provisions in Chapter 23 of 

ACI 318-14. The strut-and-tie truss model used to design these specimens is shown in 

Figure 2-2. The horizontal locations of Nodes A and A’ were aligned with the center of the 

bearing plates. Since the column was subjected to pure compression, Nodes B and B’ were 

positioned at the quarter points within the column width. The vertical location of Nodes B 

and B’ was determined as the middle of the rectangular compression block at the column 

face. The design process involved checking the yield strength of Tie AA’, the compressive 

strength of Struts AB, A’B’, BB’, BC, and B’C’, and the back, bearing, and inclined faces 

of Nodes A, A’, B, and B’.   

 

Figure 2-2. Strut-and-tie model 

A A’

B B’

C C’

Pu

R1 R2
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The secondary reinforcement in C1 was designed according to the crack-control 

reinforcement requirements described in Section 23.5 of ACI 318-14. The No. 4 bars 

comprising the secondary reinforcement in this specimen were evenly distributed across 

the inclined strut. As a result, the strut coefficient (βs) was taken as 0.75 when designing 

this specimen using STM.  

Specimen C3 was designed without any crack-control, i.e. secondary, 

reinforcement. Therefore, a lower βs value of 0.60 was implemented in the strut-and-tie 

capacity calculations. Designing new corbels that are not reinforced to control cracking is 

not recommended for any application. However, this specimen was designed to investigate 

the failure mechanisms governing the corbel capacity and the performance of STM 

provisions in assessing the strength of existing corbels that do not comply with the 

recommended design practice.  

All four specimens contained symmetric primary reinforcement anchored by a No. 

8 cross bar welded at each end, as recommended in Section 16.5.6.3 of ACI 318-14. All 

specimens also contained No. 4 reinforcing ties spaced at 3.5 in. (89 mm) in the column 

region to prevent premature failure of the specimens.  

The speciemens were fabricated at Ferguson Structural Engineering Laboratory 

(FSEL). Specimen C0 was constructed prior to the other specimens to verify the suitability 

of fabrication and testing procedures. Specimens C1, C2, and C3 were cast together to 

minimize the potential effects of variable mechanical properties of concrete on observed 

specimen behavior. Wooden formwork was used in the fabrication of all specimens, as 

shown in Figure 2-3 (a). 
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Figure 2-3. Specimen and fabrication details 

The No. 8 cross bars (W-bars in Figure 2-1) were welded across the four No. 8 bars 

of the primary reinforcement (M-bars), resulting in a base section for the remaining cage. 

A typical weld detail is shown in Figure 2-3 (b). No. 9 column bars (C-bars in Figure 2-1) 

were then tied onto the primary reinforcing bars. Next, the remaining No. 4 bars in the 

corbel and column areas were tied. Figure 2-3 (c) shows a completed reinforcement cage. 

To determine the strains in the reinforcement during the test, each specimen was 

instrumented with electrical resistance strain gages (SGs) on the primary reinforcing bars, 

as shown in Figure 2-4 (a). The SGs had a gage length of 0.2 in. (5 mm). The secondary 

(a) Completed formwork

(b) Typical weld

(c) Completed reinforcing cage
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reinforcement in Specimens C0, C1, and C2 was also instrumented, as shown in the figure. 

Two SGs were installed on each tie comprising the secondary reinforcement, located 

diagonally opposite from each other. The instrumented leg alternated from one tie to the 

next. The location of the SGs coincided with the interface between the column and the 

corbel. An example of the installation of a SG before the application of protective layers is 

shown in Figure 2-4 (b). 
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Figure 2-4. Instrumentation details 

The properties of the concrete mixtures used for the fabrication of the specimens 

are provided in Table 2-2. Corresponding batch tickets can be found in Appendix A. 

Linear Potentiometer
Strain Gage (Front Leg)      
Strain Gage (Back Leg)      

7 in. 7 in.

7 in.

(a) Strain gage and linear potentiometer locations

(b) Strain gage application

C1 C0, C2

All Specimens

Note: 1 in.=25.4 mm.
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Crushed limestone with a nominal maximum aggregate size of 1 in. (25 mm) was used in 

all mixtures. The mixtures for all specimens were batched and mixed at a local ready-mix 

concrete supplier and transported to FSEL. Each specimen was cast in two layers and 

internal vibrators were used after each layer was placed to ensure sufficient concrete 

consolidation. After the concrete was placed and finished, the specimens were covered with 

plastic sheeting for a minimum of 7 days for curing.  

Table 2-2. Concrete mixture properties 

  C0 C1 C2 C3 

M
ix

tu
re

 c
o
m

p
o
n
en

ts
 

Portland cement, 

lb/yd3 
423 410 

Fly ash, lb/yd3 140 150 

Coarse aggregate, 

lb/yd3 
1947 1940 

Coarse aggregate 

type 
Crushed limestone, Maximum size: 1 in. 

Fine aggregate, 

lb/yd3 
1440 1467 

Water, lb/yd3 175 211 

Super plasticizer, 

oz/yd3 
28 

Retarder, oz/yd3 6 

Water-

cementitious ratio 
0.31 0.38 

Note: 1 lb/yd3 = 0.6 kg/m3; 1 oz/yd3 = 38.7 mL/m3; 1 in. = 25.4 mm. 

 

A series of 4- by 8-in. (100- by 200- mm) concrete cylinders was cast together with 

the double-corbel specimens to obtain mechanical properties of the concrete comprising 

each specimen. The cylinders were tested according to ASTM-compliant procedures to 

determine the compressive strength of concrete at 28 days and the compressive strength, 

modulus of elasticity, and splitting tensile strength of the concrete on each double-corbel 

specimen’s test day. The cylinders were stored in the same environment as the double-
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corbel specimens to ensure similar strength gain between the cylinders and the specimens. 

Mechanical properties of the primary and secondary reinforcing bars were also measured 

using ASTM-compliant tests. Measured mechanical properties of the concrete and 

reinforcing bars are summarized in Table 2-3.  

Table 2-3. Summary of measured mechanical properties 

Property 
Test 

method 
C0 C1 C2 C3 

Concrete 

𝑓𝑐,28
′ , 

ksi 
ASTM C39 4.6 6.5 

𝑓𝑐
′, ksi ASTM C39 5.3 6.5 6.8 5.6 

𝐸𝑐,ksi ASTM C469 4,920 6,300 6,480 4,980 

𝑓𝑡, ksi ASTM C496 0.55 0.61 0.64 0.66 

No. 4 bars 
𝑓𝑦, ksi 

ASTM A370 

69.3 67.2 

𝑓𝑢, ksi 99.0 95.8 

No. 8 bars 
𝑓𝑦, ksi 73.4 70.6 

𝑓𝑢, ksi 101.6 99.3 

No. 9 bars 
𝑓𝑦, ksi 74.0 71.9 

𝑓𝑢, ksi 107.5 105.7 

Note: 1 ksi = 6.9 MPa; 𝑓𝑐
′, 𝐸𝑐 , 𝑓𝑡 = compressive strength, modulus of elasticity, 

and splitting tensile strength of concrete on test day; 

𝑓𝑐,28
′  = 28-day compressive strength of concrete; 𝑓𝑦, 𝑓𝑢 = yield and ultimate 

strength of the reinforcement.  

 

The specimens were tested in an inverted configuration, using the test setup shown 

in Figure 2-5. Load was applied by means of an 800-kip (3,560-kN) hydraulic ram, which 

was pressurized through a pneumatically controlled hydraulic pump. The specimens were 

supported by a roller support fixture on one side and a tilt-saddle (i.e. spherical seat) 

support fixture on the other side. The bearing area on these fixtures was 8- by 14 in. (203- 
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by 356 mm). The support fixtures also contained load cells, allowing the measurement of 

reaction forces during the test. As shown in Figure 2-4 (a), the specimens were also 

instrumented using four 1-in. (26-mm) linear potentiometers (LPs), one on either end of 

the specimen and two under the load application point, one on either side. These LPs were 

used to measure the specimen deformation under loading.  

 

Figure 2-5. Double-corbel test setup 

Specimen C0 was tested at a shear span of 14.5 in. (368 mm), resulting in a shear-

span-to-depth ratio of 0.66. Section 16.5.2.3 in ACI 318-14 provision requires that no part 

of the bearing area project farther from the face of support than both the end of the straight 

portion of the primary reinforcement and the interior face of the transverse bar welded to 

the primary reinforcement to provide anchorage. With the configuration used for C0, the 

end of the primary reinforcement was outside the bearing region, but the bearing plate 

Roller Support

Spherical Head

Tilt-Saddle Support

800-kip Ram
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extended beyond the interior face of the transverse bar. In other specimens, a shorter shear 

span of 13.0 in. (343 mm), corresponding with a shear-span-to-depth ratio of 0.59, was 

used to satisfy the requirements of ACI 318-14.  

The specimens were loaded in increments that were smaller than 10 percent of the 

predicted capacity of each specimen based on nominal material properties. Each increment 

was applied at a load rate of 600 lb (2.67 kN) per second or less. After each load increment, 

the cracking pattern in the specimen was traced and documented. Upon reaching the load 

corresponding to 75 percent of the calculated nominal capacity, the specimen was 

continuously loaded to failure, which was identified by a loss in the load-carrying capacity. 

  



21 

 

CHAPTER 3. RESULTS AND DISCUSSION 

Figure 3-1 shows the plots of load versus midpoint displacement for all four 

specimens. In this figure, the points corresponding to cracking, first detected yielding, 

yielding of all primary reinforcing bars, and the ultimate capacity of each specimen are 

identified. A summary of observations from the experimental program is also presented in 

Table 3-1. Detailed results of the test program are discussed in the following sections. In 

all of the discussions provided in this chapter, the reported load values are the total loads 

applied to the specimen and therefore represent twice the shear force applied to each corbel.  

 

Table 3-1. Loads corresponding to cracking, yielding, and ultimate strength of the 

specimens 

 C0 C1 C2 C3 

𝑃𝑐𝑟, kips 
North 144-168 150-180 48-96 90-120 

South 144-168 150-180 96-144 90-120 

𝑃𝑐𝑟,𝑠𝑡, kips 110 79 80 85 

𝑃𝑦1, kips ˗ 629 646 596 

𝑃𝑦,𝑎𝑙𝑙, kips ˗ 751 724 669 

𝑃𝑚𝑎𝑥, kips 641 754 802 694 

𝑃𝑦1/𝑃𝑚𝑎𝑥 ˗ 0.834 0.805 0.858 

𝑃𝑦,𝑎𝑙𝑙/𝑃𝑚𝑎𝑥 ˗ 0.996 0.902 0.963 

Note: 1 kip = 4.45 kN. 

𝑃𝑐𝑟= Load at first observed cracking; 

 𝑃𝑐𝑟,𝑠𝑡= Load corresponding to change in stiffness; 

 𝑃𝑦1= Load at first detected yielding; 𝑃𝑦,𝑎𝑙𝑙= Load corresponding to yielding of 

all primary reinforcing bars; 𝑃𝑚𝑎𝑥= Peak applied load. 
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Figure 3-1. Load vs. midpoint displacement plots for the specimens 

3.1. CRACKING PATTERNS  

Before each test, the specimen was closely examined for existing cracks potentially 

due to shrinkage or damage during handling and transportation. None of the specimen had 

cracks in the test region, i.e. the region between each support plate and the column face, 

prior to loading.  
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Figure 3-2 and Figure 3-3 show the progression of cracking within each specimen 

until the service-level load and immediately prior to failure, respectively. To estimate the 

service-level load for each specimen, the design capacity of the specimen was divided by 

1.4. In reality service loads may be slightly greater or somewhat smaller than the values 

obtained through the use of this estimation. Nevertheless, for the purposes of discussion 

this estimation is deemed appropriate. The cracking patterns shown in both figures were 

observed on one face of each specimen (the north face). Similar figures illustrating the 

cracks observed on the opposite (south) face of the specimens are provided in Appendix B.  

 

Figure 3-2. Crack patterns at service-level loads 

0-100 kips     101-150 kips     151-200 kips     201-250 kips     251-350 kips     351-400 kips     First Cracking

Note: 1 kip= 4.45kN.

Column Cracking C3C2

C0 C1
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Figure 3-3. Crack patterns immediately prior to failure 

The load corresponding to the first observation of cracks in each specimen is 

reported in Table 3-1. As indicated in Figure 3-2, the first cracks in all specimens appeared 

at the corner between the column and the horizontal face of the corbel, consistent with the 

assumed critical shear plane in the empirical method.  

At their service-level loads, corbels designed based on STM experienced slightly 

less crack propagation than those designed and detailed using the empirical method. In all 

specimens, the cracks generally extended beyond the corbel region, into the column. In 

0-100 kips     101-150 kips     151-200 kips     201-250 kips     251-350 kips     351-400 kips     Immediately  Prior to Failure
Note: 1 kip= 4.45kN.

C3C2

C0 C1
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Specimen C2, which demonstrated the most extensive cracking at its service-level load, a 

crack developed completely in the column, as indicated in Figure 3-2.  

Large shear cracks appeared on the surface of each specimen prior to failure. 

Specimens C1 and C3 had more extensive cracking than Specimens C0 and C2 

immediately prior to failure. The cracks on Specimen C3, in particular, covered a broader 

area than those on all other specimens. Unlike other specimens, the cracks formed in this 

specimen extended beyond the triangular region between the support plate and the column. 

As expected, eliminating the secondary reinforcement in this specimen led to an increase 

in the extent of cracking.  

No crack width measurements were taken from the specimens. It is likely that the 

cracks in Specimen C3 were wider than those in other specimens because there was no 

clamping force in this specimen to restrain the growth of cracks. However, general 

observations with the naked eye did not reveal a significant difference in crack widths 

among the other three specimens, which contained secondary reinforcement.  

3.2. LOAD-DEFLECTION BEHAVIOR 

Since the initial portions of the load-displacement plots are affected by support 

deformations, occurrence of first cracking in the specimens is not visually identified in the 

plots shown in Figure 3-1. To exclude the effects of support deformations, the 

measurements obtained from the LPs at the supports were subtracted from the midpoint 

displacements. The result is shown in Figure 3-4. During the structural testing of C3, one 
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of the LPs used to measure the support deformations malfunctioned. Therefore, C3 is not 

included in Figure 3-4.  

 

Figure 3-4. Load vs. deflection comparison of specimens C0, C1, and C2 

As can be seen in Figure 3-4, the first cracking of the specimens was accompanied 

by a noticeable decrease in stiffness, i.e. change in the slope of the load-deflection plot. 

The change in stiffness typically occurred before cracks became visible to the naked eye. 

As presented in Table 2-3, Specimens C1 and C2 had greater concrete compressive strength 

and modulus of elasticity and were tested at a smaller shear-span-to-depth ratio compared 

with C0. Therefore, C1 and C2 showed a slightly greater stiffness than C0, before and after 

cracking.  
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Figure 3-4 also shows that the difference in the overall load-deflection behavior of 

C1 and C2 was negligible until the last stages of loading. While these specimens 

experienced extensive cracking before failure, differences in secondary reinforcement 

between these two specimens do not appear to noticeably affect the stiffness before or after 

cracking.  

The ultimate strength of each corbel is indicated in Figure 3-1 and Table 3-1. 

Among the specimens with similar shear-span-to-depth ratios and compressive strengths 

of concrete, i.e. C1, C2, and C3, the ultimate strength of the corbel correlated with the 

amount of the secondary reinforcement.  

3.3. STRESSES IN THE REINFORCEMENT 

The stresses in the reinforcing bars were inferred from strain gage measurements, 

assuming a modulus of elasticity of 29,000 ksi (200 GPa). Figure 3-5 and Figure 3-6 show 

the stresses in the reinforcing bars at service-level and peak loads, respectively. 

Corresponding load-strain plots are provided in Appendix C for the reinforcing bars in all 

specimens. In developing these figures, it is assumed that the stress in each leg of the ties 

comprising the secondary reinforcement was equal to the stress in the other leg. 

All specimens except C0 showed reinforcement yielding during the test. The first 

yielding occurred in the primary reinforcing bars in C1 and C3 but in the secondary 

reinforcement closest to the primary reinforcement in C2. The load corresponding to the 
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first yield and the ratio of this load to the ultimate strength correlated with the amount of 

secondary reinforcement provided.  

 

Figure 3-5. Estimated stress levels in the reinforcement at service-level loads 

-2-10 ksi 11-20 ksi 21-30 ksi

31-35 ksi 36-40 ksi 41-46 ksi

C0 C1

C2 C3

Note: 1 ksi = 6.9 MPa.
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Figure 3-5 shows that overall differences in stresses in the secondary reinforcement 

were not significant among the specimens at their service-level loads. Specimen C1 showed 

slightly smaller stresses in the primary reinforcement compared to other specimens but the 

largest stresses in the secondary reinforcement were observed in this specimen.  

 

Figure 3-6. Estimated stress levels in the reinforcement at peak load 

10-40 ksi 41-50 ksi 51-60 ksi

61-65 ksi 66-70 ksi yield     .  

C0 C1

C2 C3

Note: 1 ksi = 6.9 MPa.
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As visible in Figure 3-6, at peak load, all reinforcing bars were in tension. In 

Specimens C0 and C2, maximum tensile stresses were observed in the primary 

reinforcement, and the stress level in the secondary reinforcement decreased with an 

increase in distance from the primary reinforcement. This observation is consistent with 

the simplified flexural analysis of the corbel that is used as part of the empirical design 

method. Additional secondary reinforcement in C2 appears to increase the overall capacity 

of this specimen compared to C1. However, in both C1 and C2, all of the bars that were 

distributed within the 8 in. (203mm) distance from the bearing face of the corbel had 

yielded prior to failure. One of the primary reinforcing bars in C1 yielded after reaching 

the peak load.  

Table 3-1 presents both 𝑃𝑦1/𝑃𝑚𝑎𝑥 and 𝑃𝑦,𝑎𝑙𝑙/𝑃𝑚𝑎𝑥 ratios for the specimens, where 

𝑃𝑦1 is the load at first detected yielding, 𝑃𝑦,𝑎𝑙𝑙 is the load at complete yielding of the 

primary reinforcement, and 𝑃𝑚𝑎𝑥 is the peak load. As can be seen in this table, while first 

yielding in Specimen C1 was detected at a smaller load compared to C2, complete yielding 

of the primary reinforcement occurred at a greater load in C1. However, Specimen C1 

failed almost immediately after all bars comprising the primary reinforcement yielded, 

whereas C2 could carry an additional 78-kip (347-kN) load before failure. Similar to C1, 

C3 failed soon after complete yielding of the bars comprising the primary reinforcement 

of this specimen.  

Stresses on the order of 64 ksi (441 MPa) were detected in the primary 

reinforcement of C0. However, none of the strain measurements from the bars in this 
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specimen revealed yielding of the reinforcement. As shown in Table 2-3, the yield strength 

of primary and secondary reinforcement in this specimen was slightly greater than that of 

the other three specimens. Moreover, as previously noted, a longer shear span was also 

used for testing C0 compared to the other three specimens, resulting in the bearing plate’s 

being extended beyond the interior face of the transverse anchorage bar. This configuration 

could potentially result in diminished stress development in the primary reinforcement of 

this specimen, preventing this reinforcement from being completely utilized. However, no 

evidence of insufficient reinforcement anchorage was observed in this specimen. 

3.4. FAILURE AND POST-FAILURE CONDITIONS 

Failure of all specimens was identified as a sudden loss of load accompanied by the 

occurrence of significant damage to the specimens in a brittle, explosive manner. Specimen 

C0 was the only specimen in which compression failure of the inclined strut occurred 

before detected yielding of the reinforcement. All other specimens failed through yielding 

of the primary reinforcement, followed by failure of the inclined strut.  

Figure 3-7 shows the post-failure condition of the specimens. Additional figures 

from the experimental program are provided in Appendix D. All specimens failed on the 

corbel placed over the tilt-saddle support. The strut failures in C0, C1, and C2 were 

relatively similar, showing clear signs of compression failure, with noticeable spalling of 

the cover concrete on the inclined strut. In C3, however, the strut showed a splitting-type 

failure due to tensile stresses perpendicular to the inclined crack.  
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Figure 3-7. Post-failure conditions of the specimens 

For specimen C0, the failure crack, which developed along the inclined strut 

between the column and the inside edge of the bearing area, was the second to appear and 
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grew in length and width throughout the rest of the test. For specimens C1, C2, and C3, the 

crack along which failure occurred was not present until later stages of the test, i.e. after 

reaching approximately 75 percent of the predicted capacity when the cracks were no 

longer marked. The failure crack in C3 formed at a shallower angle compared to those of 

C0, C1, and C2. This crack started at the outside edge of the bearing plate, which is 

different than the observations from the other three specimens.   

3.5. DISCUSSION OF TEST RESULTS 

To evaluate the performance of different design provisions in predicting the load-

carrying capacities of the specimens, the measured mechanical properties of materials 

comprising each specimen were used to calculate the ultimate strength of that specimen 

according to: 1) the empirical method in Chapter 16 provisions of ACI 318-14; 2) STM 

according to the Chapter 23 provisions of ACI 318-14; and 3) STM according to Section 

5.6.3 of AASHTO LRFD Bridge Design Specifications. All load and resistance factors 

were taken equal to 1. Details of the calculations according to each method are provided in 

Appendix E. A summary of the results is provided in Table 3-2.  
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Table 3-2. Comparison of predicted and measured capacities of the specimens 

 C0 C1 C2 C3 

𝑃𝑚𝑎𝑥, kips 641 754 802 694 

𝑃𝐴𝐶𝐼,𝐸𝑚𝑝, kips 555 615 632 571 

𝑃𝐴𝐶𝐼,𝑆𝑇𝑀, kips 448 556 558 468 

𝑃𝐴𝐴𝑆𝐻𝑇𝑂,0.45, kips  426* 556* 558* 477* 

𝑣𝐴𝐴𝑆𝑆𝐻𝑇𝑂 0.58** 0.53** 0.51** 0.45 

𝑃𝐴𝐴𝑆𝐻𝑇𝑂,𝜈, kips 519* 556 558 477* 

𝑃𝑚𝑎𝑥/𝑃𝐴𝐶𝐼,𝐸𝑚𝑝 1.16 1.23 1.27 1.22 

𝑃𝑚𝑎𝑥/ 𝑃𝐴𝐶𝐼,𝑆𝑇𝑀 1.43 1.36 1.44 1.49 

𝑃𝑚𝑎𝑥/𝑃𝐴𝐴𝑆𝐻𝑇𝑂,0.45 1.50 1.36 1.44 1.45 

𝑃𝑚𝑎𝑥/𝑃𝐴𝐴𝑆𝐻𝑇𝑂,𝜈 1.24 1.36 1.44 1.45 

Note: 1 kip = 4.45kN. 

𝑃𝐴𝐶𝐼,𝐸𝑚𝑝, 𝑃𝐴𝐶𝐼,𝑆𝑇𝑀 = Capacities according to Chapters 16 and 23 of 

ACI 318-14, respectively; 𝑣𝐴𝐴𝑆𝑆𝐻𝑇𝑂= Concrete efficiency factor 

according to AASHTO LRFD for the strut-to-node interface; 

 𝑃𝐴𝐴𝑆𝐻𝑇𝑂,0.45= Capacity according to AASHTO LRFD, assuming 

𝜈=0.45; 𝑃𝐴𝐴𝑆𝐻𝑇𝑂,𝜈= Capacity according to AASHTO LRFD, ignoring 

the crack-control reinforcement requirements. 

* Without considering the back face of Nodes A and A’.  

** Ignoring the requirements in Article 5.6.3.6 of AASHTO LRFD.  

 

 

The reinforcement detailing used within Specimens C1 and C3 did not comply with 

the requirements of the empirical method in ACI 318-14. However, the nominal shear and 

flexural strengths of these specimens were calculated according to the provisions of Section 

16.5.4 in ACI 318-14 to estimate the load-carrying capacity for comparison purposes. In 

other words, the provisions of Section 16.5.5 regarding the required amount of secondary 
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reinforcement were ignored when using the empirical method for Specimens C1 and C3. 

For all four specimens, the capacity estimates according to the empirical method were 

governed by the provisions of Section 16.5.2.4 in ACI 318-14. 

The STM provisions of ACI 318-14 predicted the failure of Specimen C0 to occur 

in the back face of the CCT node (Node A in Figure 2-2). According to these provisions, 

the governing mode for Specimens C1 and C2, as well as the second governing mode for 

C0, was yielding of the primary tie reinforcement. In Specimen C3, however, failure of the 

inclined strut (Strut AB in Figure 2-2) was the governing failure mode.  

The STM provisions in AASHTO LRFD are generally similar to ACI 318-14 

provisions, with a few key differences. First, the strut strength is assumed to be governed 

by the strength of the node faces to which the strut is connected. Therefore, only the node 

faces are examined, without checking the strut separately. Second, AASHTO LRFD 

specifications are clear that checking the capacity of smeared nodes, i.e. nodes not bounded 

by a bearing plate, such as Node B in Figure 2-2, is unnecessary. The crack-control 

reinforcement provisions are also more stringent in AASHTO LRFD, requiring distributed 

reinforcement in both orthogonal directions to enable the use of a concrete efficiency factor 

greater than 0.45. 

Two sets of results are presented in Table 3-2 for AASHTO LRFD specifications, 

varying in the assumed concrete efficiency factor for checking the nodes. None of the 

specimens meet the crack-control reinforcement requirements of AASHTO LRFD, as they 

did not contain any vertical reinforcement in the corbels. In a conservative interpretation 



36 

 

of these specifications, the concrete efficiency factor should be taken as 0.45 for all four 

specimens, resulting in strength values that are reported as 𝑃𝐴𝐴𝑆𝐻𝑇𝑂,0.45 in Table 3-2. For 

comparison, an alternative set of ultimate strengths was also calculated according to 

AASHTO LRFD specifications for specimens other than C3. In these calculations, the lack 

of vertical secondary reinforcement was ignored, and greater concrete efficiency factors, 

according to Table 5.6.3.5.3a-1 of AASHTO LFRD, were used. The resulting strength 

values are reported as 𝑃𝐴𝐴𝑆𝐻𝑇𝑂,𝜈 in Table 3-2. Due to the lack of secondary reinforcing bars 

in Specimen C3, the efficiency factor was always taken as 0.45 for this specimen. 

According to Article 5.6.3.5.3b of AASHTO LRFD specifications, the bond 

stresses of adequately developed bars do not need to be applied to the back face of the 

node. For the specimens in this test program, a transverse bar is welded to develop the 

primary reinforcing bars relatively close to the back face of the CCT nodes (Nodes A and 

A’ in Figure 2-2). As a result, the back face might be completely or partially subjected to 

bond stresses, and it might be prudent to apply the tie force to the back face of these nodes. 

Checking the back face of the CCT nodes would control the load-carrying capacity of all 

specimens when using a concrete efficiency factor of 0.45, and that of Specimens C0 and 

C3 when using the greater concrete efficiency factors shown in Table 3-2. However, since 

no experimental evidence of back face damage was observed in any of the specimens, it 

appears unnecessary to check the back face of the CCT node for corbels with configurations 

similar to specimens used in this test program. The capacity estimates that are indicated 

with an asterisk in Table 3-2 were calculated without checking the back face of the CCT 
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nodes. When this strength check is not considered, the capacities of Specimens C0 and C3 

are governed by the strength of the inclined face of Nodes A and A’ whereas yielding of 

the primary reinforcement governs the capacities of Specimens C1 and C2. 

Table 3-2 also presents the ratios of the maximum load measured during the 

structural test to the capacities predicted using each of the design procedures described 

above. The load-carrying capacities of all specimens exceeded their predicted capacities 

based on all calculation procedures, meaning that all of the methods provide a safe estimate 

for the ultimate strength of the corbels investigated in this test program. The most 

conservative estimates were obtained from the STM provisions of ACI 318-14 and those 

of AASHTO LRFD assuming the lower concrete efficiency factor of 0.45. The use of both 

of these methods was consistent with the amount of secondary reinforcement provided 

within the specimens, without ignoring any detailing requirements.  

Comparison between the 𝑃𝑚𝑎𝑥/𝑃𝐴𝐶𝐼,𝐸𝑚𝑝 and 𝑃𝑚𝑎𝑥/𝑃𝐴𝐶𝐼,𝑆𝑇𝑀 ratios shows that the 

strut-and-tie method was more conservative than the empirical method of the ACI 318-14 

provisions for estimating the capacities of all specimens, including those detailed according 

to the requirements of the empirical method. The 𝑃𝑚𝑎𝑥/𝑃𝐴𝐶𝐼,𝑆𝑇𝑀 ratios were greater for 

Specimens C0 and C2 compared with C1. This observation is expected, as these specimens 

contained greater amounts of steel than required by the STM provisions of ACI 318-14. 

The additional secondary reinforcement, while beneficial to the load-carrying capacity, is 

not considered in calculating the capacities of these specimens. Due to a similar reason, the 

𝑃𝑚𝑎𝑥/𝑃𝐴𝐴𝑆𝐻𝑇𝑂,0.45 ratio was greater for C0 and C2 compared with C1.  
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Failure of Specimens C1 and C2 was predicted to be governed by yielding of the 

primary reinforcement in all STM calculations (with the aforementioned exclusion of the 

back face check for AASHTO LRFD). As a result, equal capacities were predicted for these 

specimens in all STM procedures. For Specimen C3, the STM provisions of ACI 318-14 

provided a capacity estimate that was more conservative than that of AASHTO LRFD.  

Unlike ACI 318-14, AASHTO LRFD specifications do not require checking the 

strength of struts if the nodal strengths are sufficient. When using the STM provisions of 

ACI 318-14 for Specimen C3, failure of the inclined strut corresponds to a noticeably 

smaller load than the load associated with failure of the inclined face of Nodes A and A’. 

The more conservative estimate for the capacity of this specimen by ACI 318-14 provisions 

appears to be a result of this additional check. However, the data obtained from this study 

are too limited for making general conclusions regarding the necessity of performing 

independent strength checks for struts. Despite the predictions of AASHTO LRFD and 

ACI 318-14, yielding of the tie reinforcement was eventually confirmed in Specimen C3, 

which shows that both provisions are very conservative in taking the concrete strength into 

account for corbels without crack-control reinforcement. Considering the variability of 

concrete strength and the potential brittle failure of corbels without crack-control 

reinforcement, this observed conservatism is desirable.   

The observations from this test program clearly shows the merits of STM according 

to Chapter 23 of ACI 318-14 in providing safe estimates of the capacity of corbels, 

independently of the empirical provisions provided in Chapter 16. All four specimens, 
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containing different amounts of secondary reinforcement, exceeded their strength 

predictions according to the STM provisions. However, the capacity estimates from these 

provisions were reasonably accurate and not excessively conservative. Moreover, slightly 

less service-level cracking was observed in the specimens that were designed and detailed 

according to the STM provisions compared to those detailed based on the empirical 

method. The use of corbels without crack-control reinforcement is not recommended, due 

to the possibility of sudden, brittle failures. However, the ACI 318-14 STM provisions 

could conservatively estimate the capacity of Specimen C3, indicating the potential 

suitability of these provisions for estimating the capacity of existing corbels with poor or 

unclear detailing of distributed reinforcement. 

The empirical method, while still providing conservative estimates of the load-

carrying capacity, was not as effective as the STM provisions. Development of cracks and 

the observed failure modes in the specimens did not correspond to the flexural and shear-

friction failure modes governing the empirical method. Moreover, the use of the empirical 

method results in restrictive detailing requirements that make this method ineffective for 

estimating the capacities of many existing corbels.   
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CHAPTER 4. SUMMARY AND CONCLUSIONS 

Four full-scale double-corbel specimens were designed according to the provisions 

of ACI 318-14 and fabricated at the Ferguson Structural Engineering Laboratory. Two 

specimens were designed according to the empirical provisions of Chapter 16 and the other 

two were designed using the STM provisions of Chapter 23. The specimens were tested to 

investigate the efficacy of STM provisions in comparison with the empirical method. 

Strains in the primary and secondary reinforcement and cracking conditions of the 

specimens were extensively monitored. Measured load-carrying capacities of the 

specimens were compared with the capacities calculated according to the two 

aforementioned methods as well as the STM provisions of AASHTO LRFD. The primary 

conclusions from this study were as follows: 

 Overall Corbel Behavior: Specimens C1, which was detailed according to STM, 

showed a very similar load-deflection behavior compared to that of Specimen C2, 

which was designed according to the empirical method. All specimens developed 

significant shear cracks in the inclined strut regions prior to failure. At their service-

level loads, specimens designed using STM showed slightly less cracking. However, 

the overall differences in cracking conditions immediately prior to failure were not 

significant among the three specimens that contained secondary reinforcement.  

 Reinforcement Requirements: The crack-control reinforcement requirements in 

Chapter 23 of ACI 318-14 appear sufficient to prevent premature failure of corbels 
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designed according to STM. Yielding of the primary tie reinforcement was confirmed 

in Specimen C1, which was detailed merely based on Chapter 23 provisions and did 

not meet the detailing requirements of the empirical method in Chapter 16 of ACI 318-

14. 

 Performance of STM Provisions: The STM provisions in ACI 318-14 provided 

conservative estimates of the capacities of all specimens. For specimens that complied 

with the detailing requirements of the empirical method, the capacities estimated using 

STM were more conservative than those predicted using the empirical method. The 

specimens did not satisfy the crack-control reinforcement requirements of AASHTO 

LRFD. However, these STM design provisions also provided conservative lower-

bound estimates of the ultimate strengths of the specimens.  

 Evaluating Non-Compliant Designs: STM provisions of ACI 318-14 and AASHTO 

LRFD provided conservative estimates of the capacity of Specimen C3, which did not 

contain any secondary reinforcement. It is not recommend to design new corbels 

without secondary reinforcement because limited redistribution capability in such 

corbels might lead to premature, brittle failures. However, these results show that STM 

provisions can be used to obtain a lower-bound estimate of the capacity of existing 

corbels in which secondary reinforcement detailing is unknown or does not comply 

with code requirements.  

The results of this study suggest that STM provisions may be independently used 

to design new corbels and evaluate the strength of existing corbels that do not necessarily 
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comply with code requirements. It is recommended that similar tests be conducted on more 

specimens with various geometries, concrete strengths, amounts of reinforcement, and 

horizontal loads to confirm the validity of observations from this testing program for 

different conditions in which corbels might be used.   
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APPENDIX A.  MATERIALS 

A.1 OVERVIEW 

This appendix provides information on the materials comprising each specimen and 

details on the material testing results. Testing of concrete cylinders and reinforcement 

samples was completed according to ASTM-compliant procedures at Ferguson Structural 

Engineering Laboratory (FSEL).  

A.2 EXPLANATION OF THE NOTATION USED IN THIS APPENDIX  

D = measured diameter of the cylinder,  

Ec = modulus of elasticity of concrete, 

f’c = concrete compressive strength, 

ft = splitting tensile strength of concrete, 

fu = ultimate tensile strength of steel reinforcement, 

fy = yield strength of steel reinforcement, and 

L = measured length of the cylinder. 

  



 44 

A.3 MODULUS OF ELASTICITY, TENSILE STRENGTH, AND CONCRETE COMPRESSIVE 

STRENGTH FOR EACH SPECIMEN 

Table A-1. Modulus of elasticity data for each test specimen 

 
 

 

 

Table A-2. Splitting tensile strength data for each test specimen 

 
  

Specimen Cylinder ID Age (days) Date Lavg (in.) D (in.) L/D Ec (ksi)

C0 16 30 20-05-2016 7.9 4.01 1.97 5,180

C0 17 30 20-05-2016 7.9 4.01 1.97 4,730

C0 18 30 20-05-2016 7.9 4.01 1.97 4,840

C1 13 28 24-08-2016 7.9 4.01 1.97 7,400

C1 14 28 24-08-2016 7.9 4.01 1.97 5,130

C1 15 28 24-08-2016 7.9 4.01 1.97 6,380

C2 22 44 09-09-2016 7.8 4.01 1.95 6,800

C2 23 44 09-09-2016 7.9 4.01 1.97 4,060

C2 24 44 09-09-2016 7.9 4.01 1.97 6,160

C3 31 63 28-09-2016 7.9 4.01 1.97 4,800

C3 32 63 28-09-2016 7.8 4.01 1.95 6,940

C3 33 63 28-09-2016 7.9 4.02 1.97 5,150

Specimen Cylinder ID Age (days) Date Lavg (in.) Davg (in.) L/D f t  (psi)

C0 19 30 20-05-2016 7.9 4.01 1.97 570

C0 20 30 20-05-2016 7.9 4.01 1.97 545

C0 21 30 20-05-2016 7.9 4.01 1.97 525

C1 16 28 24-08-2016 7.9 4.01 1.97 565

C1 17 28 24-08-2016 7.9 4.01 1.97 595

C1 18 28 24-08-2016 7.9 4.01 1.97 660

C2 25 44 09-09-2016 7.9 4.01 1.97 625

C2 26 44 09-09-2016 7.9 4.01 1.97 660

C2 27 44 09-09-2016 7.9 4.01 1.97 635

C3 31 63 28-09-2016 7.9 4.02 1.97 660

C3 32 63 28-09-2016 7.9 4.01 1.97 630

C3 33 63 28-09-2016 7.9 4.02 1.97 695



 45 

 
Figure A-1. Concrete compressive strength for C0 

 

 

 
Figure A-2. Concrete compressive strength for C1 
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Figure A-3. Concrete compressive strength for C2 

 

 

 
Figure A-4. Concrete compressive strength for C3 
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A.4 CONCRETE BATCHING DETAILS 

 
Figure A-5. Concrete batching ticket for Specimen C0 



 48 

 
Figure A-6. Concrete batching for Specimens C1, C2, and C3 
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A.5 MECHANICAL PROPERTIES OF REINFORCEMENT 

 
Figure A-7. Stress-strain plots for No. 4 bars used in C0 (secondary reinforcement) 

 
Figure A-8. Stress-strain plots for No. 4 bars used in C1, C2, & C3 (secondary 

reinforcement) 
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Figure A-9. Stress-strain plots for No. 8 bars used in C0 (primary reinforcement) 

 

 

 
Figure A-10. Stress-strain plots for No. 8 bars used in C1, C2, & C3 (primary 

reinforcement) 
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Figure A-11. Stress-strain plots for No. 9 bars used in C0 (column bars) 

 

 

 
Figure A-12. Stress-strain plots for No. 9 bars used in C1, C2, & C3 (column bars) 
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APPENDIX B.  CRACK PATTERNS 

This appendix shows the cracking patterns on the south side of all specimens. 

Figure B-1 and Figure B-2 show cracking at service-level and peak loads for all specimens, 

respectively. 
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Figure B-1. Crack patterns at service-level loads 
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Figure B-2. Crack patterns at peak loads 
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APPENDIX C. LOAD VS. STRAIN PLOTS 

This appendix provides experimental results that were not included in Chapter 3. 

These results are presented in plots of load versus strain, as follows: 

 C0 total load vs. strains in primary reinforcement: Figure C-1 

 C0 total load vs. strains in secondary reinforcement (T1 & T2): Figure C-2 

 C0 total load vs. strains in secondary reinforcement (T3 & T4): Figure C-3 

 C1 total load vs. strains in primary reinforcement: Figure C-4 

 C1 total load vs. strains in secondary reinforcement (T1 & T2): Figure C-5 

 C1 total load vs. strains in secondary reinforcement (T3): Figure C-6 

 C2 total load vs. strains in primary reinforcement: Figure C-7 

 C2 total load vs. strains in secondary reinforcement (T1 & T2): Figure C-8 

 C2 total load vs. strains in secondary reinforcement (T3 & T4): Figure C-9 

 C3 total load vs. strains in primary reinforcement:  Figure C-10 
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Figure C-1. C0 total load vs. strains in primary reinforcement 

 

 

Figure C-2. C0 total load vs. strains in secondary reinforcement (T1 & T2) 
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Figure C-3. C0 total load vs. strains in secondary reinforcement (T3 & T4) 

 

 

 

Figure C-4. C1 total load vs. strains in primary reinforcement 
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Figure C-5. C1 total load vs. strains in secondary reinforcement (T1 & T2) 

 

 

 
Figure C-6. C1 total load vs. strains in secondary reinforcement (T3) 
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Figure C-7. C2 total load vs. strains in primary reinforcement 

 

 

 
Figure C-8. C2 total load vs. strains in secondary reinforcement (T1 & T2) 
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Figure C-9. C2 total load vs. strains in secondary reinforcement (T3 & T4) 

 

 

 
Figure C-10. C3 total load vs. strains in primary reinforcement 
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APPENDIX D.  EXPERIMENTAL PROCEDURES 

 OVERVIEW 

Appendix D presents more details of the experimental procedures and the 

calibration information for the instrumentation used during the test program. The following 

sections provide details of the experimental procedures for the specimens: 

 Section D.2 depicts the experimental procedures with figures, 

 Section D.3 explains the calibration factors for each instrument, and 

 Section D.4 includes the notes reflecting the events during testing of each 

specimen. 
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 EXPERIMENTAL PROCEDURE 

D.2.1. Fabrication 

 
Figure D-1. Fabrication of formwork and reinforcing cages 

(a) Finished Forms (b) Lowering the Cage

(c) Formwork for Specimen C0 (Side View)

(d) Reinforcing Cage in the Formwork (C0) (e) Specimens C1, C2, and C3 in Forms
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Figure D-2. Fabrication of specimens: typical casting procedures 

(h) Covering the Surface for Curing(g) Finished Specimen (C0)

(a) Slump Test

(c) Concrete Placement

(f) Finishing the Surface(e) Screeding

(d) Internal Vibration

(b) Cylinder Preparation
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D.2.2. Test Setup 

 
Figure D-3. Specimen movement into setup 

 

 
Figure D-4. Double-corbel test setup 

(a) North View

(c) South View (d) West View

(b) East View
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D.2.3. Post-Test Photos 

 
Figure D-5. Specimen C0 after the test 

(a) North View

(c) South View

(b) East View
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Figure D-6. Specimen C1 after the test 

(a) North View

(c) South View

(b) East View
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Figure D-7. Specimen C2 after the test 

(a) North View

(c) South View

(b) East View
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Figure D-8. Specimen C3 after the test 

  

(a) North View

(b) South View
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 INSTRUMENTATION CALIBRATION 

Calibration factors for linear potentiometers (LPs), load cells (LCs), and strain 

gages (SGs) are provided in the following table. LCs 070310 and 070312 were both used 

for all specimens. Due to a brittle failure that damaged the connection on LC 070311, this 

load cell was replaced with LC 070309 for testing Specimen C3. 

Table D-1. Calibration factors 

FSEL ID Location Type Use 
Calibration 

Factor 

177 South 

LP  

(1 in. Stroke) 

Displacement 

Measurement 

1.060 

181 West 1.059 

186 East 1.060 

191 North 1.055 

070309 East (C3) 

LC  

(500 kip 

Capacity) 

Load 

Measurement 

2.270 

070310 Southwest 2.279 

070311 
East 

 (C0, C1, C2) 
2.271 

070312 Northwest 2.276 

--- 

Primary and 

Secondary 

Reinforcement 

SG 
Strain 

Measurement 
2.130 
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 TEST RECORDS  

The following tables document the observations during the structural testing of the 

specimens. In these tables, the shear force, i.e. the load that would be experienced by half 

of the specimen, are recorded. These forces represent half of the total load on the specimen.  

Table D-2. Specimen C0 test record 

Time 
Target  

Shear Force 

Actual  

Shear Force 
Comments and Observations 

11:50 AM --- --- Test start 

11:55 AM --- --- 
Unloaded due to leakage of hydraulic fluid 

from the pump 

12:06 PM --- --- Second test start 

12:07 PM 24 kips 24.39 kips No cracks 

12:12 PM 48 kips 48.15 kips No cracks 

12:16 PM 72 kips 72.15 kips No cracks 

12:20 PM 96 kips 96.19 kips 
North face: four significant cracks;  

South face: four significant cracks 

12:27 PM 120 kips 120.04 kips Extensions on all existing cracks 

12:33 PM 144 kips 144.22 kips Six crack extensions 

12:39 PM 168 kips 168.21 kips Three crack extensions 

12:44 PM 192 kips 192.21 kips Eight crack extensions and two new cracks 

--- 261.5 kips 327.54 kips Failure over tilt-saddle support 
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Table D-3. Specimen C1 test record 

Time 
Target  

Shear Force 

Actual  

Shear Force 
Comments and Observations 

10:54 AM 15 kips 15.98 kips No cracks 

11:19 AM --- --- 
Unloaded to inspect linear potentiometers; test 

restarted 

11:20 AM 15 kips 15.52 kips No cracks 

11:25 AM 30 kips 30.19 kips No cracks 

11:29 AM 45 kips 45.16 kips No cracks 

11:35 AM 60 kips 60.90 kips No cracks 

11:38 AM 75 kips 75.01 kips No cracks 

11:42 AM  90 kips 90.45 kips 
North face: three cracks; 

South face: four cracks 

11:50 AM 105 kips 105.10 kips 
North face: one crack, three crack extensions; 

South face: three crack extensions 

11:58 AM 120 kips 120.19 kips 
North face: one crack extension; 

South face: two crack extensions 

12:03 PM 135 kips 136.01 kips 
North face: two crack extensions; 

South face: two crack extensions 

12:09 PM 150 kips 150.55 kips 
North face: two crack extensions; 

South face: two crack extensions 

--- --- 155.00 kips North face, east side: third major shear crack  

--- --- 158.50 kips North face, west side: third major shear crack 

12:40 PM 210.5 kips 377.00 kips Failure over tilt-saddle support 
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Table D-4. Specimen C2 test record 

Time 
Target  

Shear Force 

Actual  

Shear Force 
Comments and Observations 

10:29 AM --- --- Test start 

10:31 AM 24 kips 24.00 kips No cracks 

10:29 AM --- --- 
Restart test due to leakage of hydraulic fluid 

from the pump 

11:07 AM --- --- 
Unloaded due to leakage of hydraulic fluid from 

the pump 

11:18 AM --- --- Restart the test 

11:19 AM 24 kips 27.70 kips No cracks 

11:24 AM 48 kips 48.37 kips 
North face: two cracks; 

South face: no cracks 

11:30 AM 72 kips 72.15 kips 
North face: two crack extensions; 

South face: two cracks 

11:36 AM 96 kips 96.11 kips 

North face: two cracks and two crack 

extensions; 

South face: one crack and two crack extensions 

11:46 AM 120 kips 120.00 kips 
North face: two crack extensions; 

South face: three crack extensions 

11:53 AM 144 kips 144.60 kips 
North face: one crack, one crack extensions; 

South face: two cracks, one crack extension 

12:01 PM 168 kips 168.19 kips 
North face: one crack, two crack extensions; 

South face: one crack, two crack extensions 

12:09 PM 192 kips 192.09 kips 
North face: one crack, one crack extension; 

South face: two crack extensions 

12:18 PM --- --- Start loading to failure 

12:22 PM --- --- Additional crack Northwest 

12:24 PM 261.5 kips 261.5 kips Surpasses calculated specimen capacity 

12:26 PM --- 309.00 kips Some bars have yielded 

12:41 PM 261.5 kips 401.10 kips Failure over tilt-saddle support 
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Table D-5. Specimen C3 test record 

Time 
Target  

Shear Force 

Actual  

Shear Force 
Comments and Observations 

11:16 AM --- --- Test start 

11:18 AM 15 kips 15.20 kips No cracks 

11:23 AM 30 kips 30.08 kips No cracks 

11:27 AM 45 kips 45.08 kips No cracks 

11:31 AM 60 kips 60.13 kips 
North face: two cracks; 

South face: two cracks 

11:36 AM 75 kips 75.32 kips 
North face: two crack extensions; 

South face: two crack extensions 

11:42 AM 90 kips 90.10 kips 
North face: one crack, one crack extension; 

South face one crack, one crack extension 

11:49 AM 105 kips 105.17 kips 
North face: one crack, three crack extensions; 

South face: one crack, four crack extensions 

11:57 AM 120 kips 120.01 kips 
North face: two crack extensions; 

South face: two crack extensions 

12:09 PM 135 kips 135.10 kips 
North face: three crack extensions; 

South face: one crack extension 

12:15 PM 150 kips 150.11 kips North face: four crack extensions 

12:22 PM --- --- Start loading to failure 

12:32 PM --- 262.50 kips 
North face (west): formation of third shear 

crack 

--- --- 299.00 kips 
North face (east): formation of third shear 

crack 

12:44 PM 209 kips 347.18 kips Failure over tilt-saddle support 
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APPENDIX E.  CAPACITY CALCULATIONS 

E.1 OVERVIEW 

Appendix E provides the calculations used to estimate the capacities of the corbels 

according to the empirical method in ACI 318-14, the STM provisions in ACI 318-14, and 

AASHTO LRFD Design Specifications STM provisions. The following sections provide 

the procedures and results for each of these calculations for each specimen: 

 Section E.2 defines the notation that is used in this appendix. 

 Section E.3 details the empirical method calculations. 

 Section E.4 describes the STM method from ACI 318-14. 

 Section E.5 shows calculations for the conservative STM AASHTO method. 

 Section E.6 examines the unconservative STM AASHTO method. 

E.2 NOTATION  

This section introduces the variables used in the calculations. Note that the variable 

names might vary from method to method to match the notation used in each code. For all 

methods, the Vn values correspond to the shear-force capacity of one side of the specimens 

and therefore represent half of the nominal load-carrying capacity of the double-corbel 

specimen.  

Aback, i = Area of the back face of Node i (where i is stated), in.2  

Abearing, i = Area of the bearing face of Node i (where i is stated), in.2 

Ainclined, i = Area of the inclined face of Node i (where i is stated), in.2 
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Apb = Cross-sectional area of a primary reinforcement bar, in.2 

As = Total area of the primary reinforcement, in.2 

Asb = Cross-sectional area of a secondary reinforcing bar, in.2 (ACI 318-14, 

Empirical) 

Ash = Cross-sectional area of a secondary reinforcement bar, in.2 (ACI 318-14, 

STM) 

Asi = Cross-sectional area of the inclined strut, in.2  

Atype = Type of Node A  

av = Shear span, in. 

Av = Cross-sectional area of a secondary reinforcement bar, in.2 (AASHTO LRFD, 

STM) 

Avfs = Cross-sectional area of a shear-friction reinforcement bar, in.2 (ACI 318-14, 

Empirical method) 

B = Vertical distance of Node B from the corbel-column corner, in. 

Btype = Type of Node B 

bw = Width of the specimen, in. 

c = Depth of the neutral axis at the shear plane, in. 

C = Compression force, kips 

CC = Crack-control reinforcement ratio 

d = Depth of primary reinforcement, in.  

Fback, i = Calculated capacity of the back face of Node i (where i is stated), kips 

Fbearing, i = Calculated capacity of the bearing face of Node i (where i is stated), kips 
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Finclined, i = Calculated capacity of the inclined face of Node i (where i is stated), 

kips 

f’c = Concrete compressive strength, psi 

fce = Effective concrete compressive strength in a strut or nodal zone, ksi 

Fs = Calculated capacity of the inclined strut, kips 

fyp = steel yield strength of the primary reinforcing bars, ksi 

fys = steel yield strength of the secondary reinforcing bars, ksi 

Lback, i = Length of the back face of Node i (where i is state), in. 

Lbearing, i = Length of the bearing face of Node i (where i is state), in. 

Linclined, i = Length of the inclined face of Node i (where i is state), in. 

Mn = Calculated moment capacity of the specimen, kip-ft (ACI 318-14, Empirical) 

Npb = Number of primary reinforcing bars 

Nsb = Number of secondary reinforcing bars 

ssh = Spacing of the secondary reinforcement bars, in. (ACI 318-14, STM) 

sv = Spacing of the secondary reinforcement bars, in. (AASHTO LRFD, STM) 

T = Tensile force at the shear plane, kips 

Vn = Calculated shear-force capacity of the specimen, kips (ACI 318-14, Empirical) 

Vn, a = Calculated shear-force capacity of the specimen from Equation 16.5.2.4 a, 

kips. (ACI 318-14, Empirical) 

Vn, AA’ = Calculated shear-force capacity of the specimen based on the tensile 

capacity of Tie AA’, kips 
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Vn, b = Calculated shear-force capacity of the specimen from Equation 16.5.2.4 b, 

kips (ACI 318-14, Empirical) 

Vn, back, i = Calculated shear-force capacity of the specimen based on the back face 

of Node i (where i is stated), kips 

Vn, bearing, i = Calculated shear-force capacity of the specimen based on the bearing 

face of Node i (where i is stated), kips 

Vn, c = Calculated shear-force capacity of the specimen from Equation 16.5.2.4 c, 

kips (ACI 318-14, Empirical) 

Vn, inclined, i = Calculated shear-force capacity of the specimen based on the inclined 

face of Node i (where i is stated), kips 

Vn, m = Calculated capacity of the specimen through moment capacity, kips 

(ACI 318-14, Empirical) 

Vn, Ni = Calculated shear-force capacity of the specimen based on all faces of Node i, 

kips (ACI 318-14, STM) 

Vn, s = Calculated shear-force capacity of the specimen based on shear friction, kips 

(ACI 318-14, Empirical) 

Vn, st = Calculated shear-force capacity of the specimen based on the inclined strut, 

kips (ACI 318-14, STM) 

Vu = Measured shear-force capacity of the specimen, kips 

n = Nodal zone coefficient (ACI 318-14, STM) 

s = Strut coefficient (ACI 318-14, STM) 

1 = Efficiency factor of the concrete for the rectangular stress block 
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s = Strain in the primary steel reinforcement at the face of the column, (in./in.) 

 = Angle between the inclined strut and the tie, degrees 

 = Coefficient of friction used for shear-friction calculations 

 = Concrete efficiency factor (AASHTO STM) 

  



 79 

 

E.3 CAPACITY CALCULATIONS: ACI 318-14 EMPIRICAL METHOD 

Specimen C0 

Table E-1. Specimen C0 properties used in the empirical method 

 
  

Equation (where applicable)

f' c 5250 psi

f yp 73.37 ksi

f ys 69.28 ksi

A s 3.16 in.2
A pb *(N pb )

A vfs 1.6 in.2
A sb *(N sb )

b w 14 in.

d 22 in.

a v 14.5 in.

 1.4

V u 320.5 kips

V u /V n 1.16 -OK

Specimen Properties

Test Results
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Table E-2. Specimen C0 empirical method calculations 

 
  

Equation Reference*

V n, a 323.40 kips 0.2f' c b w d Eqn. 16.2.5.4 [a]

V n, b 277.20 kips (480+0.08f' c )b w d Eqn. 16.2.5.4 [b]

V n, c 492.80 kips 1600b w d Eqn. 16.2.5.4 [c]

V n, s 479.78 kips A vfs f ys +A s f yp Eqn. 22.9.4.2

 1 0.79 0.85-((0.05(f' c -4000))/1000) Table 22.2.2.4.3

c 4.71 in. (1000A s f yp )/(0.85f' c  1 b w ) Section 22.2.2.4.1

a 3.71 in.  1 c Section 22.2.2.4.1

C 231.85 kips 0.85f' c ab w

T 231.85 kips A s f ys

M n 389.21 kip-ft C(c-(a/2))+T(d -c)

V n, m 322.10 kip 12M n /a v

V n 277.20 kip min(V n, a , V n, b , V n, c , V n, s , V n, m )

*   Equation, section, and table numbers refer to those in ACI 318-14.

Dimensional Limits Check

Shear Friction Check

Moment Capacity Check
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Specimen C1 

Table E-3. Specimen C1 properties used in the empirical method 

 
  

Equation (where applicable)

f' c 6490 psi

f yp 70.58 ksi

f ys 67.18 ksi

A s 3.16 in.2
A pb *(N pb )

A vfs 1.2 in.2
A sb *(N sb )

b w 14 in.

d 22 in.

a v 13 in.

 1.4

V u 376.94 kips

V u /V n 1.22 -OK

Specimen Properties

Test Results
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Table E-4. Specimen C1 empirical method calculations 

 
  

Equation Reference*

V n, a 399.78 kips 0.2f' c b w d Eqn. 16.2.5.4 [a]

V n, b 307.75 kips (480+0.08f' c )b w d Eqn. 16.2.5.4 [b]

V n, c 492.80 kips 1600b w d Eqn. 16.2.5.4 [c]

V n, s 425.11 kips A vfs f ys +A s f yp Eqn. 22.9.4.2

 1 0.73 0.85-((0.05(f' c -4000))/1000) Table 22.2.2.4.3

c 3.98 in. (1000A s f yp )/(0.85f' c  1 b w ) Section 22.2.2.4.1

a 2.89 in.  1 c Section 22.2.2.4.1

C 223.03 kips 0.85f' c ab w

T 223.03 kips A s f ys

M n 382.05 kip-ft C(c-(a/2))+T(d -c)

V n, m 352.66 kip 12M n /a v

V n 307.75 kip min(V n, a , V n, b , V n, c , V n, s , V n, m )

*   Equation, section, and table numbers refer to those in ACI 318-14.

Dimensional Limits Check

Shear Friction Check

Moment Capacity Check
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Specimen C2 

Table E-5. Specimen C2 properties used in the empirical method 

 
  

Equation (where applicable)

f' c 6830 psi

f yp 70.58 ksi

f ys 67.18 ksi

A s 3.16 in.2
A pb *(N pb )

A vfs 1.6 in.2
A sb *(N sb )

b w 14 in.

d 22 in.

a v 13 in.

 1.4

V u 401.11 kips

V u /V n 1.27 -OK

Specimen Properties

Test Results
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Table E-6. Specimen C2 empirical method calculations 

 
  

Equation Reference*

V n, a 420.73 kips 0.2f' c b w d Eqn. 16.2.5.4 [a]

V n, b 316.13 kips (480+0.08f' c )b w d Eqn. 16.2.5.4 [b]

V n, c 492.80 kips 1600b w d Eqn. 16.2.5.4 [c]

V n, s 462.73 kips A vfs f ys +A s f yp Eqn. 22.9.4.2

 1 0.71 0.85-((0.05(f' c -4000))/1000) Table 22.2.2.4.3

c 3.87 in. (1000A s f yp )/(0.85f' c  1 b w ) Section 22.2.2.4.1

a 2.74 in.  1 c Section 22.2.2.4.1

C 223.03 kips 0.85f' c ab w

T 223.03 kips A s f ys

M n 383.39 kip-ft C(c-(a/2))+T(d -c)

V n, m 353.90 kip 12M n /a v

V n 316.13 kip min(V n, a , V n, b , V n, c , V n, s , V n, m )

*   Equation, section, and table numbers refer to those in ACI 318-14.

Dimensional Limits Check

Shear Friction Check

Moment Capacity Check
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Specimen C3 

Table E-7. Specimen C3 properties used in the empirical method 

 
  

Equation (where applicable)

f' c 5590 psi

f yp 70.58 ksi

f ys 67.18 ksi

A s 3.16 in.2
A pb *(N pb )

A vfs 0 in.2
A sb *(N sb )

b w 14 in.

d 22 in.

a v 13 in.

 1.4

V u 347.18 kips

V u /V n 1.22 -OK

Specimen Properties

Test Results
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Table E-8. Specimen C3 empirical method calculations 

 
  

Equation Reference*

V n, a 344.34 kips 0.2f' c b w d Eqn. 16.2.5.4 [a]

V n, b 285.58 kips (480+0.08f' c )b w d Eqn. 16.2.5.4 [b]

V n, c 492.80 kips 1600b w d Eqn. 16.2.5.4 [c]

V n, s 312.24 kips A vfs f ys +A s f yp Eqn. 22.9.4.2

 1 0.77 0.85-((0.05(f' c -4000))/1000) Table 22.2.2.4.3

c 4.35 in. (1000A s f yp )/(0.85f' c  1 b w ) Section 22.2.2.4.1

a 3.35 in.  1 c Section 22.2.2.4.1

C 223.03 kips 0.85f' c ab w

T 223.03 kips A s f ys

M n 377.73 kip-ft C(c-(a/2))+T(d -c)

V n, m 348.68 kip 12M n /a v

V n 285.58 kip min(V n, a , V n, b , V n, c , V n, s , V n, m )

*   Equation, section, and table numbers refer to those in ACI 318-14.

Dimensional Limits Check

Shear Friction Check

Moment Capacity Check
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E.4 SPECIMEN CALCULATIONS: ACI 318-14 STM  

Specimen C0 

Table E-9. Specimen C0 properties used in the ACI STM 
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Table E-10. Specimen C0 ACI STM (part 1 of 3) 

  

  

Equation (where applicable) Explanation (where applicable)*

Atype CCT Node A, figure in 2 pages

Lback, A 4.00 in.

Lbearing, A 8.00 in.

Linclined, A 8.63 in. Lback, Acos+Lbearing, Asin Figure 23.2.6b.

Aback, A 56.00 in.2
Lback, Abw

Abearing, A 112.00 in.2
Lbearing, Abw

Ainclined, A 120.83 in.2
Linclined, Abw

 n 0.80 Table 23.9.2

f ce 3.57 ksi 0.85 n ( f' c ) Eqn. 23.9.2

F back, A 199.92 kips f ce Aback, A Eqn. 23.9.1

V n, back, A 223.74 kips F back, Atan

F bearing, A 399.84 in. f ce Abearing, A Eqn. 23.9.1

V n , bearing, A 399.84 kips F bearing, A

F inclined, A 431.36 kips f ce Ainclined, A Eqn. 23.9.1

V n, inclined, A 321.66 kips F inclined, Asin

V n, NA 223.74 kip min(V n, back, A , V n, bearing, A, V n, inclined, A)

Inclined Node Geometry

Node A Check

Back Face

Bearing Face

Inclined Face

*   Equation, section, and table numbers refer to those in ACI 318-14.
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Table E-11. Specimen C0 ACI STM (part 2 of 3) 

 
  

Equation (where applicable) Explanation (where applicable)*

Btype CCC Node B, figure on next page

Lback, B 3.71 in.  1 c Section 23.2.2

Lbearing, B 7.00 in. Section 23.2.2

Linclined, B 7.69 in. Lback, Bcos+Lbearing, Bsin Figure 23.2.6b.

Aback, B 51.96 in.2
Lback, Bbw

Abearing, B 98.00 in.2
Lbearing, Bbw

Ainclined, B 107.69 in.2
Linclined, Bbw

 n 1.00 Table 23.9.2

f ce 4.46 ksi 0.85 n ( f' c ) Eqn. 23.9.2

F back, B 231.85 kips f ce Aback, B Eqn. 23.9.1

V n, back, B 259.47 kips F back, Btan

F bearing, B 437.33 in. f ce Abearing, B Eqn. 23.9.1

V n , bearing, B 437.33 kips F bearing, B

F inclined, B 480.59 kips f ce Ainclined, B Eqn. 23.9.1

V n, inclined, B 358.37 kips F inclined, Bsin

V n, NB 259.47 kip min(V n, back, B , V n, bearing, B, V n, inclined, B)

Inclined Node Geometry

Inclined Face

Node B Check

Back Face

Bearing Face

*   Equation, section, figure, and table numbers refer to those in ACI 318-14.
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Table E-12. Specimen C0 ACI STM (part 3 of 3) 

 
  

Equation Reference *

V n, AA' 259.47 kips T(tan) Eqn. 23.7.2

Asi 107.69 in.2
min(Abearing, A,Abearing, B) Section 23.4.1

 s 0.75 Table 23.4.3

f ce 3.35 ksi 0.85 s f' c Eqn. 23.4.3

F s 360.44 kips f ce Asi Eqn. 23.4.1

V n, st 268.77 kips F ssin

V n 223.74 kips min(V n, AA' , V n, NA , V n, NB , V n, s )

Inclined Face

Tie Strength

Strut Strength

* Equation, section and table numbers refer to those in ACI 318-14.

A A’

B B’

C C’

Pu

R1 R2

 
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Specimen C1 

Table E-13. Specimen C1 properties used in the ACI STM 
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Table E-14. Specimen C1 ACI STM (part 1 of 3) 

 
  

Equation (where applicable) Explanation (where applicable)*

Atype CCT Node A, figure in 2 pages

Lback, A 4.00 in.

Lbearing, A 8.00 in.

Linclined, A 8.74 in. Lback, Acos+Lbearing, Asin Figure 23.2.6b.

Aback, A 56.00 in.2
Lback, Abw

Abearing, A 112.00 in.2
Lbearing, Abw

Ainclined, A 122.40 in.2
Linclined, Abw

 n 0.80 Table 23.9.2

f ce 4.4132 ksi 0.85 n ( f' c ) Eqn. 23.9.2

F back, A 247.14 kips f ce Aback, A Eqn. 23.9.1

V n, back, A 307.89 kips F back, Atan

F bearing, A 494.28 in. f ce Abearing, A Eqn. 23.9.1

V n , bearing, A 494.28 kips F bearing, A

F inclined, A 540.16 kips f ce Ainclined, A Eqn. 23.9.1

V n, inclined, A 421.24 kips F inclined, Asin

V n, NA 307.89 kip min(V n, back, A , V n, bearing, A, V n, inclined, A)

Inclined Node Geometry

Node A Check

Back Face

Bearing Face

Inclined Face

*   Equation, section, and table numbers refer to those in ACI 318-14.
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Table E-15. Specimen C1 ACI STM (part 2 of 3) 

 
  

Equation (where applicable) Explanation (where applicable)*

Btype CCC Node B, figure on next page

Lback, B 2.89 in.  1 c Section 23.2.2

Lbearing, B 7.00 in. Section 23.2.2

Linclined, B 7.27 in. Lback, Bcos+Lbearing, Bsin Figure 23.2.6b.

Aback, B 40.43 in.2
Lback, Bbw

Abearing, B 98.00 in.2
Lbearing, Bbw

Ainclined, B 101.73 in.2
Linclined, Bbw

 n 1.00 Table 23.9.2

f ce 5.52 ksi 0.85 n ( f' c ) Eqn. 23.9.2

F back, B 223.03 kips f ce Aback, B Eqn. 23.9.1

V n, back, B 277.86 kips F back, Btan

F bearing, B 540.62 in. f ce Abearing, B Eqn. 23.9.1

V n , bearing, B 540.62 kips F bearing, B

F inclined, B 561.21 kips f ce Ainclined, B Eqn. 23.9.1

V n, inclined, B 437.66 kips F inclined, Bsin

V n, NB 277.86 kip min(V n, back, B , V n, bearing, B, V n, inclined, B)

Inclined Node Geometry

Inclined Face

Node B Check

Back Face

Bearing Face

*   Equation, section, figure, and table numbers refer to those in ACI 318-14.
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Table E-16. Specimen C1 ACI STM (part 3 of 3) 

 
  

Equation Reference *

V n, AA' 277.86 kips T(tan) Eqn. 23.7.2

Asi 101.73 in.2
min(Abearing, A,Abearing, B) Section 23.4.1

 s 0.75 Table 23.4.3

f ce 4.14 ksi 0.85 s f' c Eqn. 23.4.3

F s 420.91 kips f ce Asi Eqn. 23.4.1

V n, st 328.24 kips F ssin

V n 277.86 kips min(V n, AA' , V n, NA , V n, NB , V n, s )

Inclined Face

Tie Strength

Strut Strength

* Equation, section and table numbers refer to those in ACI 318-14.

A A’

B B’

C C’

Pu

R1 R2

 
A A’

B B’

C C’

Pu

R1 R2

 
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Specimen C2 

Table E-17. Specimen C2 properties used in the ACI STM 
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Table E-18. Specimen C2 ACI STM (part 1 of 3) 

 
  

Equation (where applicable) Explanation (where applicable)*

Atype CCT Node A, figure in 2 pages

Lback, A 4.00 in.

Lbearing, A 8.00 in.

Linclined, A 8.75 in. Lback, Acos+Lbearing, Asin Figure 23.2.6b.

Aback, A 56.00 in.2
Lback, Abw

Abearing, A 112.00 in.2
Lbearing, Abw

Ainclined, A 122.44 in.2
Linclined, Abw

 n 0.80 Table 23.9.2

f ce 4.6444 ksi 0.85 n ( f' c ) Eqn. 23.9.2

F back, A 260.09 kips f ce Aback, A Eqn. 23.9.1

V n, back, A 325.15 kips F back, Atan

F bearing, A 520.17 in. f ce Abearing, A Eqn. 23.9.1

V n , bearing, A 520.17 kips F bearing, A

F inclined, A 568.67 kips f ce Ainclined, A Eqn. 23.9.1

V n, inclined, A 444.08 kips F inclined, Asin

V n, NA 325.15 kip min(V n, back, A , V n, bearing, A, V n, inclined, A)

Inclined Node Geometry

Node A Check

Back Face

Bearing Face

Inclined Face

*   Equation, section, and table numbers refer to those in ACI 318-14.
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Table E-19. Specimen C2 ACI STM (part 2 of 3) 

 
  

Equation (where applicable) Explanation (where applicable)*

Btype CCC Node B, figure on next page

Lback, B 2.74 in.  1 c Section 23.2.2

Lbearing, B 7.00 in. Section 23.2.2

Linclined, B 7.18 in. Lback, Bcos+Lbearing, Bsin Figure 23.2.6b.

Aback, B 38.42 in.2
Lback, Bbw

Abearing, B 98.00 in.2
Lbearing, Bbw

Ainclined, B 100.53 in.2
Linclined, Bbw

 n 1.00 Table 23.9.2

f ce 5.81 ksi 0.85 n ( f' c ) Eqn. 23.9.2

F back, B 223.03 kips f ce Aback, B Eqn. 23.9.1

V n, back, B 278.83 kips F back, Btan

F bearing, B 568.94 in. f ce Abearing, B Eqn. 23.9.1

V n , bearing, B 568.94 kips F bearing, B

F inclined, B 583.61 kips f ce Ainclined, B Eqn. 23.9.1

V n, inclined, B 455.75 kips F inclined, Bsin

V n, NB 278.83 kip min(V n, back, B , V n, bearing, B, V n, inclined, B)

Inclined Node Geometry

Inclined Face

Node B Check

Back Face

Bearing Face

*   Equation, section, figure, and table numbers refer to those in ACI 318-14.
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Table E-20. Specimen C2 ACI STM (part 3 of 3) 

 
  

Equation Reference *

V n, AA' 278.83 kips T(tan) Eqn. 23.7.2

Asi 100.53 in.2
min(Abearing, A,Abearing, B) Section 23.4.1

 s 0.75 Table 23.4.3

f ce 4.35 ksi 0.85 s f' c Eqn. 23.4.3

F s 437.71 kips f ce Asi Eqn. 23.4.1

V n, st 341.81 kips F ssin

V n 278.83 kips min(V n, AA' , V n, NA , V n, NB , V n, s )

Inclined Face

Tie Strength

Strut Strength

* Equation, section and table numbers refer to those in ACI 318-14.

A A’

B B’

C C’

Pu

R1 R2

 
A A’

B B’

C C’

Pu

R1 R2

 
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Specimen C3 

Table E-21. Specimen C3 properties used in the ACI STM 
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Table E-22. Specimen C3 ACI STM (part 1 of 3) 

 
  

Equation (where applicable) Explanation (where applicable)*

Atype CCT Node A, figure in 2 pages

Lback, A 4.00 in.

Lbearing, A 8.00 in.

Linclined, A 8.73 in. Lback, Acos+Lbearing, Asin Figure 23.2.6b.

Aback, A 56.00 in.2
Lback, Abw

Abearing, A 112.00 in.2
Lbearing, Abw

Ainclined, A 122.25 in.2
Linclined, Abw

 n 0.80 Table 23.9.2

f ce 3.8012 ksi 0.85 n ( f' c ) Eqn. 23.9.2

F back, A 212.87 kips f ce Aback, A Eqn. 23.9.1

V n, back, A 262.20 kips F back, Atan

F bearing, A 425.73 in. f ce Abearing, A Eqn. 23.9.1

V n , bearing, A 425.73 kips F bearing, A

F inclined, A 464.69 kips f ce Ainclined, A Eqn. 23.9.1

V n, inclined, A 360.76 kips F inclined, Asin

V n, NA 262.20 kip min(V n, back, A , V n, bearing, A, V n, inclined, A)

Inclined Node Geometry

Node A Check

Back Face

Bearing Face

Inclined Face

*   Equation, section, figure, and table numbers refer to those in ACI 318-14.
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Table E-23. Specimen C3 ACI STM (part 2 of 3) 

 

  

Equation (where applicable) Explanation (where applicable)*

Btype CCC Node B, figure on next page

Lback, B 3.35 in.  1 c Section 23.2.2

Lbearing, B 7.00 in. Section 23.2.2

Linclined, B 7.55 in. Lback, Bcos+Lbearing, Bsin Figure 23.2.6b.

Aback, B 46.94 in.2
Lback, Bbw

Abearing, B 98.00 in.2
Lbearing, Bbw

Ainclined, B 105.67 in.2
Linclined, Bbw

 n 1.00 Table 23.9.2

f ce 4.75 ksi 0.85 n ( f' c ) Eqn. 23.9.2

F back, B 223.03 kips f ce Aback, B Eqn. 23.9.1

V n, back, B 274.72 kips F back, Btan

F bearing, B 465.65 in. f ce Abearing, B Eqn. 23.9.1

V n , bearing, B 465.65 kips F bearing, B

F inclined, B 502.08 kips f ce Ainclined, B Eqn. 23.9.1

V n, inclined, B 389.80 kips F inclined, Bsin

V n, NB 274.72 kip min(V n, back, B , V n, bearing, B, V n, inclined, B)

Inclined Node Geometry

Inclined Face

Node B Check

Back Face

Bearing Face

*   Equation, section, figure, and table numbers refer to those in ACI 318-14.
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Table E-24. Specimen C3 ACI STM (part 3 of 3) 

 
  

Equation Reference *

V n, AA' 274.72 kips T(tan) Eqn. 23.7.2

Asi 105.67 in.2
min(Abearing, A,Abearing, B) Section 23.4.1

 s 0.6 Table 23.4.3

f ce 2.85 ksi 0.85 s f' c Eqn. 23.4.3

F s 301.25 kips f ce Asi Eqn. 23.4.1

V n, st 233.88 kips F ssin

V n 233.88 kips min(V n, AA' , V n, NA , V n, NB , V n, s )

Inclined Face

Tie Strength

Strut Strength

* Equation, section and table numbers refer to those in ACI 318-14.

A A’

B B’

C C’

Pu

R1 R2

 
A A’

B B’

C C’

Pu

R1 R2

 
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E.5 SPECIMEN CALCULATIONS: AASHTO LRFD STM ( = 0.45) 

The tables presented in this section include the STM calculations based on 

AASHTO LRFD, assuming a conservative concrete efficiency factor of 0.45. Note that the 

confinement modification factor, m, is taken as 1 in all calculations in this section and 

Section E.6. 
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Specimen C0 

Table E-25. Specimen C0 properties used in AASHTO STM calculations ( = 0.45) 

 

Equation (where applicable) Explanation (where applicable)*

f' c 5250 psi

f yp 73.37 ksi

A s 3.16 in.2
A pb *(N pb )

b w 14 in.

d 22 in.

a v 14.5 in.

 1 0.79 0.85-((0.05(f' c -4000))/1000)

T 231.85 kips A s f yp

c 4.71 in. (1000T)/(0.85f' c  1 b w )

 s 0.011 in./in. 0.003(d -c)/c Check whether steel has yielded.

B 1.86 in.  1 c/2 Node B Location, figure next page

 48.22  tan-1[(d -B)/(3.5+a v )]  shown on figure next page

Node A, figure next page

Atype CCT

Lback, A 4.00 in.

Lbearing, A 8.00 in.

Linclined, A 8.63 in. Lback, Acos+Lbearing, Asin Figure 5.6.3.2-1

Aback, A 56.00 in.2
Lback, Abw

Abearing, A 112.00 in.2
Lbearing, Abw

Ainclined, A 120.83 in.2
Linclined, Abw

V u 320.5 kips

V u /V n 1.51

Test Results

Specimen Properties

Formula Calculations for Checks

Used to find the strut inclination 

based on concrete behavior at 

column face.

Inclined Node Geometry

* Figure number refers to those in AASHTO LRFD Bridge Design Specifications.
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Table E-26. Specimen C0 AASHTO STM calculations ( = 0.45)  

 
  

Equation Reference*

V n, AA' 259.47 kips T(tan) Eqn. 5.6.3.4.1-1

 0.45 Table 5.6.3.5.3

f ce 2.3625 ksi ( f' c ) Eqn. 5.6.3.5.3a-1

F back, A 132.30 kips f ce Aback, A Eqn. 5.6.3.5.1-1

V n, back, A 148.06 kips F back, Atan

F bearing, A 264.60 in. f ce Abearing, A Eqn. 5.6.3.5.1-1

Vn , bearing, A 264.60 kips F bearing, A

F inclined, A 285.46 kips f ce Ainclined, A Eqn. 5.6.3.5.1-1

V n, inclined, A 212.86 kips F inclined, Asin

V n 212.86 kip ** min(V n, AA' , Vn, bearing, A, Vn, inclined, A)

Tie Strength

Node A Check

** Doesn't include back-face checks that would have controlled.

* Equation and table numbers refer to those in AASHTO LRFD Bridge Design Specifications.

A A’

B B’

C C’

Pu

R1 R2

 
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Specimen C1 

Table E-27. Specimen C1 properties used in AASHTO STM calculations ( = 0.45) 

 
  

Equation (where applicable) Explanation (where applicable)*

f' c 6490 psi

f yp 70.58 ksi

A s 3.16 in.2
A pb *(N pb )

b w 14 in.

d 22 in.

a v 13 in.

 1 0.73 0.85-((0.05(f' c -4000))/1000)

T 223.03 kips A s f yp

c 3.98 in. (1000T)/(0.85f' c  1 b w )

 s 0.014 in./in. 0.003(d -c)/c Check whether steel has yielded.

B 1.44 in.  1 c/2 Node B Location, figure next page

 51.25  tan-1[(d -B)/(3.5+a v )]  shown on figure next page

Node A, figure next page

Atype CCT

Lback, A 4.00 in.

Lbearing, A 8.00 in.

Linclined, A 8.74 in. Lback, Acos+Lbearing, Asin Figure 5.6.3.2-1

Aback, A 56.00 in.2
Lback, Abw

Abearing, A 112.00 in.2
Lbearing, Abw

Ainclined, A 122.40 in.2
Linclined, Abw

V u 376.9 kips

V u /V n 1.36

Test Results

Specimen Properties

Formula Calculations for Checks

Used to find the strut inclination 

based on concrete behavior at 

column face.

Inclined Node Geometry

* Figure number refers to those in AASHTO LRFD Bridge Design Specifications.
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Table E-28. Specimen C1 AASHTO STM calculations ( = 0.45) 

 
  

Equation Reference*

V n, AA' 277.86 kips T(tan) Eqn. 5.6.3.4.1-1

 0.45 Table 5.6.3.5.3

f ce 2.9205 ksi ( f' c ) Eqn. 5.6.3.5.3a-1

F back, A 163.55 kips f ce Aback, A Eqn. 5.6.3.5.1-1

V n, back, A 203.75 kips F back, Atan

F bearing, A 327.10 in. f ce Abearing, A Eqn. 5.6.3.5.1-1

Vn , bearing, A 327.10 kips F bearing, A

F inclined, A 357.46 kips f ce Ainclined, A Eqn. 5.6.3.5.1-1

V n, inclined, A 278.76 kips F inclined, Asin

V n 277.86 kip ** min(V n, AA' , Vn, bearing, A, Vn, inclined, A)

Tie Strength

Node A Check

** Doesn't include back-face checks that would have controlled.

* Equation and table numbers refer to those in AASHTO LRFD Bridge Design Specifications.

A A’

B B’

C C’

Pu

R1 R2

 
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Specimen C2 

Table E-29. Specimen C2 properties used in AASHTO STM calculations ( = 0.45) 

 
  

Equation (where applicable) Explanation (where applicable)*

f' c 6830 psi

f yp 70.58 ksi

A s 3.16 in.2
A pb *(N pb )

b w 14 in.

d 22 in.

a v 13 in.

 1 0.71 0.85-((0.05(f' c -4000))/1000)

T 223.03 kips A s f yp

c 3.87 in. (1000T)/(0.85f' c  1 b w )

 s 0.014 in./in. 0.003(d -c)/c Check whether steel has yielded.

B 1.37 in.  1 c/2 Node B Location, figure next page

 51.34  tan-1[(d -B)/(3.5+a v )]  shown on figure next page

Node A, figure next page

Atype CCT

Lback, A 4.00 in.

Lbearing, A 8.00 in.

Linclined, A 8.75 in. Lback, Acos+Lbearing, Asin Figure 5.6.3.2-1

Aback, A 56.00 in.2
Lback, Abw

Abearing, A 112.00 in.2
Lbearing, Abw

Ainclined, A 122.44 in.2
Linclined, Abw

V u 401.1 kips

V u /V n 1.44

Test Results

Specimen Properties

Formula Calculations for Checks

Used to find the strut inclination 

based on concrete behavior at 

column face.

Inclined Node Geometry

* Figure number refers to those in AASHTO LRFD Bridge Design Specifications.
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Table E-30. Specimen C2 AASHTO STM calculations ( = 0.45) 

 
  

Equation Reference*

V n, AA' 278.83 kips T(tan) Eqn. 5.6.3.4.1-1

 0.45 Table 5.6.3.5.3

f ce 3.0735 ksi ( f' c ) Eqn. 5.6.3.5.3a-1

F back, A 172.12 kips f ce Aback, A Eqn. 5.6.3.5.1-1

V n, back, A 215.18 kips F back, Atan

F bearing, A 344.23 in. f ce Abearing, A Eqn. 5.6.3.5.1-1

Vn , bearing, A 344.23 kips F bearing, A

F inclined, A 376.33 kips f ce Ainclined, A Eqn. 5.6.3.5.1-1

V n, inclined, A 293.88 kips F inclined, Asin

V n 278.83 kip ** min(V n, AA' , Vn, bearing, A, Vn, inclined, A)

Tie Strength

Node A Check

** Doesn't include back-face checks that would have controlled.

* Equation and table numbers refer to those in AASHTO LRFD Bridge Design Specifications.

A A’

B B’

C C’

Pu

R1 R2

 
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Specimen C3 

Table E-31. Specimen C3 properties used in AASHTO STM calculations ( = 0.45) 

 
  

Equation (where applicable) Explanation (where applicable)*

f' c 5590 psi

f yp 70.58 ksi

A s 3.16 in.2
A pb *(N pb )

b w 14 in.

d 22 in.

a v 13 in.

 1 0.77 0.85-((0.05(f' c -4000))/1000)

T 223.03 kips A s f yp

c 4.35 in. (1000T)/(0.85f' c  1 b w )

 s 0.012 in./in. 0.003(d -c)/c Check whether steel has yielded.

B 1.68 in.  1 c/2 Node B Location, figure next page

 50.93  tan-1[(d -B)/(3.5+a v )]  shown on figure next page

Node A, figure next page

Atype CCT

Lback, A 4.00 in.

Lbearing, A 8.00 in.

Linclined, A 8.73 in. Lback, Acos+Lbearing, Asin Figure 5.6.3.2-1

Aback, A 56.00 in.2
Lback, Abw

Abearing, A 112.00 in.2
Lbearing, Abw

Ainclined, A 122.25 in.2
Linclined, Abw

V u 347.2 kips

V u /V n 1.45

Inclined Node Geometry

Test Results

Specimen Properties

Formula Calculations for Checks

Used to find the strut inclination 

based on concrete behavior at 

column face.

* Figure number refers to those in AASHTO LRFD Bridge Design Specifications.
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Table E-32. Specimen C3 AASHTO STM calculations ( = 0.45) 

 
 

Equation Reference*

V n, AA' 274.72 kips T(tan) Eqn. 5.6.3.4.1-1

 0.45 Table 5.6.3.5.3

f ce 2.5155 ksi ( f' c ) Eqn. 5.6.3.5.3a-1

F back, A 140.87 kips f ce Aback, A Eqn. 5.6.3.5.1-1

V n, back, A 173.51 kips F back, Atan

F bearing, A 281.74 in. f ce Abearing, A Eqn. 5.6.3.5.1-1

Vn , bearing, A 281.74 kips F bearing, A

F inclined, A 307.52 kips f ce Ainclined, A Eqn. 5.6.3.5.1-1

V n, inclined, A 238.74 kips F inclined, Asin

V n 238.74 kip ** min(V n, AA' , Vn, bearing, A, Vn, inclined, A)

Tie Strength

Node A Check

** Doesn't include back-face checks that would have controlled.

* Equation and table numbers refer to those in AASHTO LRFD Bridge Design Specifications.

A A’

B B’

C C’

Pu

R1 R2

 
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E.6 SPECIMEN CALCULATIONS: AASHTO STM ( > 0.45) 

The tables in this section present the AASHTO LRFD STM calculations for 

Specimens C0, C1, and C2, assuming a concrete efficiency factor according to Table 

5.6.3.5.3a-1 of these specifications. Since the distributed reinforcement in none of the 

specimens satisfied the crack-control reinforcement requirements of AASHTO LRFD 

according to Article 5.6.3.6, the use of efficiency factors greater than 0.45 does not conform 

to the specifications. However, this set of calculations was completed for comparison 

purposes. For Specimen C3, which did not contain any crack-control reinforcement, the 

concrete efficiency factor was always taken as 0.45. Therefore, Specimen C3 is not 

included in this section. 
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Specimen C0 

Table E-33. Specimen C0 properties used in AASHTO STM calculations ( > 0.45) 

 
  

Equation (where applicable) Explanation (where applicable)*

f' c 5250 psi

f yp 73.37 ksi

A s 3.16 in.2
A pb *(N pb )

b w 14 in.

d 22 in.

a v 14.5 in.

A v 0.4 in.2

s v 3.5 in.

 1 0.79 0.85-((0.05(f' c -4000))/1000)

T 231.85 kips A s f yp

c 4.71 in. (1000T)/(0.85f' c  1 b w )

 s 0.011 in./in. 0.003(d -c)/c Check whether steel has yielded.

B 1.86 in.  1 c/2 Node B Location, figure next page

 48.22  tan-1[(d -B)/(3.5+a v )]  shown on figure next page

Node A, figure next page

Atype CCT

Lback, A 4.00 in.

Lbearing, A 8.00 in.

Linclined, A 8.63 in. Lback, Acos+Lbearing, Asin Figure 5.6.3.2-1

Aback, A 56.00 in.2
Lback, Abw

Abearing, A 112.00 in.2
Lbearing, Abw

Ainclined, A 120.83 in.2
Linclined, Abw

V u 320.5 kips

V u /V n 1.24

Specimen Properties

Formula Calculations for Checks

Used to find the strut inclination 

based on concrete behavior at 

column face.

Test Results

Inclined Node Geometry

* Figure number refers to those in AASHTO LRFD Bridge Design Specifications.
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Table E-34. Specimen C0 AASHTO STM calculations ( > 0.45) 

 

Equation Reference *

V n, AA' 259.47 kips T(tan) Eqn. 5.6.3.4.1-1

 0.70 Table 5.6.3.5.3a-1

f ce 3.675 ksi ( f' c ) Eqn. 5.6.3.5.3a-1

F back, A 205.80 kips f ce Aback, A Eqn. 5.6.3.5.1-1

V n, back , A 230.32 kips F back, Atan

 0.70 Table 5.6.3.5.3a-1

f ce 3.675 ksi ( f' c ) Eqn. 5.6.3.5.3a-1

F bearing, A 411.60 in. f ce Abearing, A Eqn. 5.6.3.5.1-1

V n , bearing, A 411.60 kips F bearing, A

 0.59 Table 5.6.3.5.3a-1

f ce 3.084375 ksi ( f' c ) Eqn. 5.6.3.5.3a-1

F inclined, A 372.68 kips f ce Ainclined, A Eqn. 5.6.3.5.1-1

V n, inclined, A 277.90 kips F inclined, Asin

V n 259.47 kip ** min(V n, AA' , V n, Abearing, V n, Ainclined)

Tie Strength

Node A Check

Back Face

Bearing Face

Inclined Face

** Doesn't include back-face checks that would have controlled.

* Equation and table numbers refer to those in AASHTO LRFD Bridge Design Specifications.

A A’

B B’

C C’

Pu

R1 R2

 
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Specimen C1 

Table E-35. Specimen C1 properties used in AASHTO STM calculations ( > 0.45) 

 
  

Equation (where applicable) Explanation (where applicable)*

f' c 6490 psi

f yp 70.58 ksi

A s 3.16 in.2
A pb *(N pb )

b w 14 in.

d 22 in.

a v 13 in.

A v 0.4 in.2

s v 6 in.

 1 0.73 0.85-((0.05(f' c -4000))/1000)

T 223.03 kips A s f yp

c 3.98 in. (1000T)/(0.85f' c  1 b w )

 s 0.014 in./in. 0.003(d -c)/c Check whether steel has yielded.

B 1.44 in.  1 c/2 Node B Location, figure next page

 51.25  tan-1[(d -B)/(3.5+a v )]  shown on figure next page

Node A, figure next page

Atype CCT

Lback, A 4.00 in.

Lbearing, A 8.00 in.

Linclined, A 8.74 in. Lback, Acos+Lbearing, Asin Figure 5.6.3.2-1

Aback, A 56.00 in.2
Lback, Abw

Abearing, A 112.00 in.2
Lbearing, Abw

Ainclined, A 122.40 in.2
Linclined, Abw

V u 376.9 kips

V u /V n 1.36

Specimen Properties

Formula Calculations for Checks

Used to find the strut inclination 

based on concrete behavior at 

column face.

Inclined Node Geometry

Test Results

* Figure number refers to those in AASHTO LRFD Bridge Design Specifications.
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Table E-36. Specimen C1 AASHTO STM calculations ( > 0.45) 

 

Equation Reference *

V n, AA' 277.86 kips T(tan) Eqn. 5.6.3.4.1-1

 0.70 Table 5.6.3.5.3a-1

f ce 4.543 ksi ( f' c ) Eqn. 5.6.3.5.3a-1

F back, A 254.41 kips f ce Aback, A Eqn. 5.6.3.5.1-1

V n, back , A 316.95 kips F back, Atan

 0.70 Table 5.6.3.5.3a-1

f ce 4.543 ksi ( f' c ) Eqn. 5.6.3.5.3a-1

F bearing, A 508.82 in. f ce Abearing, A Eqn. 5.6.3.5.1-1

V n , bearing, A 508.82 kips F bearing, A

 0.53 Table 5.6.3.5.3a-1

f ce 3.410495 ksi ( f' c ) Eqn. 5.6.3.5.3a-1

F inclined, A 417.44 kips f ce Ainclined, A Eqn. 5.6.3.5.1-1

V n, inclined, A 325.54 kips F inclined, Asin

V n 277.86 kip min(V n, AA' , V n, Abearing, V n, Ainclined)

Tie Strength

Node A Check

Back Face

Bearing Face

Inclined Face

* Equation and table numbers refer to those in AASHTO LRFD Bridge Design Specifications.

A A’

B B’

C C’

Pu

R1 R2

 
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Specimen C2 

Table E-37. Specimen C2 properties used in AASHTO STM calculations ( > 0.45) 

 
  

Equation (where applicable) Explanation (where applicable)*

f' c 6830 psi

f yp 70.58 ksi

A s 3.16 in.2
A pb *(N pb )

b w 14 in.

d 22 in.

a v 13 in.

A v 0.4 in.2

s v 3.5 in.

 1 0.71 0.85-((0.05(f' c -4000))/1000)

T 223.03 kips A s f yp

c 3.87 in. (1000T)/(0.85f' c  1 b w )

 s 0.014 in./in. 0.003(d -c)/c Check whether steel has yielded.

B 1.37 in.  1 c/2 Node B Location, figure next page

 51.34  tan-1[(d -B)/(3.5+a v )]  shown on figure next page

Node A, figure next page

Atype CCT

Lback, A 4.00 in.

Lbearing, A 8.00 in.

Linclined, A 8.75 in. Lback, Acos+Lbearing, Asin Figure 5.6.3.2-1

Aback, A 56.00 in.2
Lback, Abw

Abearing, A 112.00 in.2
Lbearing, Abw

Ainclined, A 122.44 in.2
Linclined, Abw

V u 401.1 kips

V u /V n 1.44

Specimen Properties

Formula Calculations for Checks

Used to find the strut inclination 

based on concrete behavior at 

column face.

Inclined Node Geometry

Test Results

* Figure number refers to those in AASHTO LRFD Bridge Design Specifications.
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Table E-38. Specimen C2 AASHTO STM calculations ( > 0.45) 

 

Equation Reference *

V n, AA' 278.83 kips T(tan) Eqn. 5.6.3.4.1-1

 0.70 Table 5.6.3.5.3a-1

f ce 4.781 ksi ( f' c ) Eqn. 5.6.3.5.3a-1

F back, A 267.74 kips f ce Aback, A Eqn. 5.6.3.5.1-1

V n, back , A 334.72 kips F back, Atan

 0.70 Table 5.6.3.5.3a-1

f ce 4.781 ksi ( f' c ) Eqn. 5.6.3.5.3a-1

F bearing, A 535.47 in. f ce Abearing, A Eqn. 5.6.3.5.1-1

V n , bearing, A 535.47 kips F bearing, A

 0.51 Table 5.6.3.5.3a-1

f ce 3.473055 ksi ( f' c ) Eqn. 5.6.3.5.3a-1

F inclined, A 425.25 kips f ce Ainclined, A Eqn. 5.6.3.5.1-1

V n, inclined, A 332.08 kips F inclined, Asin

V n 278.83 kip min(V n, AA' , V n, Abearing, V n, Ainclined)

Tie Strength

Node A Check

Back Face

Bearing Face

Inclined Face

* Equation and table numbers refer to those in AASHTO LRFD Bridge Design Specifications.

A A’

B B’

C C’

Pu

R1 R2

 
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