3,192 research outputs found

    Detection of Aortic Calcification during Vertebral Fracture Assessment (VFA) Compared to Digital Radiography

    Get PDF
    Background: Cardiovascular disease is the most common cause of mortality among post-menopausal women. Our objective was to determine whether or not lateral spine images obtained on a bone densitometer to detect prevalent vertebral fracture can also accurately detect radiographic abdominal aortic calcification (AAC), an important risk factor for cardiovascular disease independent of clinical risk factors. Methodology/Principal Findings: One hundred seventy four postmenopausal women had bone densitometry, lateral spine densitometry imaging (called vertebral fracture assessment, or VFA), and lateral spine digital radiographs. Radiographs and VFA images were scored for AAC using a previously validated 24 point scale and a simplified, new 8 point scale (AAC-8). One hundred fifty six (90%) of the VFA images were evaluable for AAC. The non-parametric intraclass correlation coefficient between VFA and radiographic 24 point and AAC-8 readings, respectively, were 0.80 (95% C.I. 0.68–0.87) and 0.76 (95% C.I. 0.65–0.84). Areas under receiver operating characteristics (ROC) curves for VFA to detect those with a radiographic 24-point AAC score ≥5 were 0.86 (95% C.I. 0.77–0.94) using the 24 point scale and 0.84 (95% C.I. 0.76–0.92) using the AAC-8 scale. Conclusion/Significance: VFA imaging intended to detect prevalent vertebral fracture can also detect radiographic AAC, an important cardiovascular disease risk factor. Since bone densitometry is recommended for all women age 65 and older, VFA imaging at the time of bone densitometry offers an opportunity to assess this risk factor in the post-menopausal female population at very little incremental time and expense

    Whole-genome sequencing shows that patient-to-patient transmission rarely accounts for acquisition of Staphylococcus aureus in an intensive care unit

    Get PDF
    BACKGROUND  Strategies to prevent Staphylococcus aureus infection in hospitals focus on patient-to-patient transmission. We used whole-genome sequencing to investigate the role of colonized patients as the source of new S. aureus acquisitions, and the reliability of identifying patient-to-patient transmission using the conventional approach of spa typing and overlapping patient stay. METHODS Over 14 months, all unselected patients admitted to an adult intensive care unit (ICU) were serially screened for S. aureus. All available isolates (n = 275) were spa typed and underwent whole-genome sequencing to investigate their relatedness at high resolution. RESULTS Staphylococcus aureus was carried by 185 of 1109 patients sampled within 24 hours of ICU admission (16.7%); 59 (5.3%) patients carried methicillin-resistant S. aureus (MRSA). Forty-four S. aureus (22 MRSA) acquisitions while on ICU were detected. Isolates were available for genetic analysis from 37 acquisitions. Whole-genome sequencing indicated that 7 of these 37 (18.9%) were transmissions from other colonized patients. Conventional methods (spa typing combined with overlapping patient stay) falsely identified 3 patient-to-patient transmissions (all MRSA) and failed to detect 2 acquisitions and 4 transmissions (2 MRSA). CONCLUSIONS Only a minority of S. aureus acquisitions can be explained by patient-to-patient transmission. Whole-genome sequencing provides the resolution to disprove transmission events indicated by conventional methods and also to reveal otherwise unsuspected transmission events. Whole-genome sequencing should replace conventional methods for detection of nosocomial S. aureus transmission

    Increased Recombination Between Active tRNA Genes

    Full text link
    Transfer RNA genes are distributed throughout eukaryotic genomes, and are frequently found as multicopy families. In Saccharomyces cerevisiae, tRNA gene transcription by RNA polymerase III suppresses nearby transcription by RNA polymerase II, partially because the tRNA genes are clustered near the nucleolus. We have tested whether active transcription of tRNA genes might also suppress recombination, since recombination between identical copies of the repetitive tRNA genes could delete intervening genes and be detrimental to survival. The opposite proved to be the case. Recombination between active tRNA genes was elevated, but only when both genes are transcribed. We also tested the effects of tRNA genes on recombination between the direct terminal repeats of a neighboring retrotransposon, since most Ty retrotransposons reside next to tRNA genes, and the selective advantage of this arrangement is not known.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63113/1/dna.2006.25.359.pd

    Estimating Turbulence Distribution over a Heterogeneous Path Using Time‐lapse Imagery from Dual Cameras

    Get PDF
    Knowledge of turbulence distribution along an experimental path can help in effective turbulence compensation and mitigation. Although scintillometers are traditionally used to measure the strength of turbulence, they provide a path-integrated measurement and have limited operational ranges. A technique to profile turbulence using time-lapse imagery of a distant target from spatially separated cameras is presented here. The method uses the turbulence induced differential motion between pairs of point features on a target, sensed at a single camera and between cameras to extract turbulence distribution along the path. The method is successfully demonstrated on a 511 m almost horizontal path going over half concrete and half grass. An array of Light-Emitting Diodes (LEDs) of non-uniform separation is imaged by a pair of cameras, and the extracted turbulence profiles are validated against measurements from 3D sonic anemometers placed along the path. A short-range experiment with a heat source to create local turbulence spike gives good results as well. Because the method is phase-based, it does not suffer from saturation issues and can potentially be applied over long ranges. Although in the present work, a cooperative target has been used, the technique can be used with non-cooperative targets. Application of the technique to images collected over slant paths with elevated targets can aid in understanding the altitude dependence of turbulence in the surface layer

    Development of the ATAQ-IPF: a tool to assess quality of life in IPF

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is no disease-specific instrument to assess health-related quality of life (HRQL) in patients with idiopathic pulmonary fibrosis (IPF).</p> <p>Methods</p> <p>Patients' perspectives were collected to develop domains and items for an IPF-specific HRQL instrument. We used item variance and Rasch analysis to construct the ATAQ-IPF (A Tool to Assess Quality of life in IPF).</p> <p>Results</p> <p>The ATAQ-IPF version 1 is composed of 74 items comprising 13 domains. All items fit the Rasch model. Domains and the total instrument possess acceptable psychometric characteristics for a multidimensional questionnaire. The pattern of correlations between ATAQ-IPF scores and physiologic variables known to be important in IPF, along with significant differences in ATAQ-IPF scores between subjects using versus those not using supplemental oxygen, support its validity.</p> <p>Conclusions</p> <p>Patient-centered and careful statistical methodologies were used to construct the ATAQ-IPF version 1, an IPF-specific HRQL instrument. Simple summation scoring is used to derive individual domain scores as well as a total score. Results support the validity of the ATAQ-IPF, and future studies will build on that validity.</p

    The GALEX View of "Boyajian's Star" (KIC 8462852)

    Get PDF
    The enigmatic star KIC 8462852, informally known as "Boyajian's Star", has exhibited unexplained variability from both short timescale (days) dimming events, and years-long fading in the Kepler mission. No single physical mechanism has successfully explained these observations to date. Here we investigate the ultraviolet variability of KIC 8462852 on a range of timescales using data from the GALEX mission that occurred contemporaneously with the Kepler mission. The wide wavelength baseline between the Kepler and GALEX data provides a unique constraint on the nature of the variability. Using 1600 seconds of photon-counting data from four GALEX visits spread over 70 days in 2011, we find no coherent NUV variability in the system on 10-100 second or months timescales. Comparing the integrated flux from these 2011 visits to the 2012 NUV flux published in the GALEX-CAUSE Kepler survey, we find a 3% decrease in brightness for KIC 8462852. We find this level of variability is significant, but not necessarily unusual for stars of similar spectral type in the GALEX data. This decrease coincides with the secular optical fading reported by Montet & Simon (2016). We find the multi-wavelength variability is somewhat inconsistent with typical interstellar dust absorption, but instead favors a RV_V = 5.0 ±\pm 0.9 reddening law potentially from circumstellar dust.Comment: 8 pages, 4 figures, ApJ Accepte
    corecore