239 research outputs found

    Environmental (waste) compliance control systems for UK SMEs

    No full text
    While the ‘environment’ is often perceived as a heavily regulated area of business, in reality, directly-regulated businesses represent a small proportion of the business community. This study aimed to evaluate and outline potential improvements to compliance controls for small and medium-sized enterprises (SMEs), particularly those involved in the waste sector. Forty-four SMEs from England were interviewed/audited between April-September 2008. Using a UK-based system as a case-in-point, the Environment Agency’s (EA) Operational Risk Appraisal (‘Opra’)/Compliance Assessment Report (CAR) system was analysed. Environmental compliance performance indicators and an initial assessment methodology for SMEs were developed. The study showed:• Compliance with permitting legislation was poor in many areas.• Regulatory authorities are either unable/failing to implement their enforcement policies or unable/failing to identify non-compliances due to the infrequency or limited nature of their inspections.• Improvements are needed to the EA Opra/CAR system – control measures are not fully taken into account when calculating risk.Recommendations to improve SME compliance controls include using internationally applicable general and specific compliance and non-compliance performance indicators, re-designing the Opra system and using an initial assessment methodology based on understanding the hazardousness of SME categories, compliance levels and operator competency.<br/

    Genetics of coronary artery calcification among African Americans, a meta-analysis

    Get PDF
    Background: Coronary heart disease (CHD) is the major cause of death in the United States. Coronary artery calcification (CAC) scores are independent predictors of CHD. African Americans (AA) have higher rates of CHD but are less well-studied in genomic studies. We assembled the largest AA data resource currently available with measured CAC to identify associated genetic variants.Methods: We analyzed log transformed CAC quantity (ln(CAC + 1)), for association with ~2.5 million single nucleotide polymorphisms (SNPs) and performed an inverse-variance weighted meta-analysis on results for 5,823 AA from 8 studies. Heritability was calculated using family studies. The most significant SNPs among AAs were evaluated in European Ancestry (EA) CAC data; conversely, the significance of published SNPs for CAC/CHD in EA was queried within our AA meta-analysis.Results: Heritability of CAC was lower in AA (~30%) than previously reported for EA (~50%). No SNP reached genome wide significance (p < 5E-08). Of 67 SNPs with p < 1E-05 in AA there was no evidence of association in EA CAC data. Four SNPs in regions previously implicated in CAC/CHD (at 9p21 and PHACTR1) in EA reached

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill & Melinda Gates Foundation

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions. Funding: Bill & Melinda Gates Foundation

    An investigation into the legal performance of small and mediumsized enterprises (SMEs), encompassing compliance levels, the impact and effectiveness of environmental legislation and improving SME environmental compliance control systems

    No full text
    There has been a great deal written about the difficulties faced by small and medium-sized enterprises (SMEs) compared to larger businesses. SMEs face difficulties complying with environmental legislation, particularly because of the amount of complex law. This can result in the ‘environment’ being treated as less of a priority even though SMEs collectively have a significant environmental impact. Over the past few years, the UK has been focused towards achieving ‘better regulation’. In particular, Hampton highlighted the need for more strategic thinking when it comes to developing regulation. Hampton suggested that regulators should use a risk-based model similar to that used by the England and Wales Environment Agency (EA). This view is shared by Local Authorities and other environmental regulators; however, there has been criticism from some commentators who suggest that certain legislation is not successfully enforced.The increased use of risk assessment by the EA has reduced the number of inspections resulting in more ‘pressure’ being put on remaining inspections as well as there being less opportunity to identify non-compliance. In addition, those businesses not included under direct regulatory regimes are unlikely to be audited for compliance against any environmental legislation; consequently a significant portion of all businesses go un-inspected and uncontrolled. Because of the number of SMEs, there needs to be an effective system of regulation that controls activities and targets those businesses that pose a risk to the environment, without unnecessarily over-burdening SMEs. It is clear from the coalition Government’s planned austerity measures in 2011 that management of the environment will have to be done with less resource than before. This thesis draws together findings from research conducted between 2005-2011. Previous research on compliance with legislation has often been conducted in isolation with little research comparing compliance across a range of legislation, and certainly not using triangulation methods to assess SMEs’ overall legal performance.This study aimed to investigate the legal performance of UK SMEs with a range of environmental legislation. This study identifies: • the level of compliance (‘spirit’ and ‘letter’ of the law) with environmental legislation;• the impact and effectiveness of environmental legislation; and• ways of improving the environmental compliance control systems for SMEs.The study incorporated a wide range of environmental legislation, including that covering:waste management/ transfer, environmental permitting (including waste exemptions), site waste management plans, WEEE, RoHS, packaging, oil storage as well as identifying other potential environmental offences. Detailed compliance audits were conducted with 44 SMEs from 5 different sectors from the north-west of England. Interviews with SME management, site staff, regulators, Government policy officials and support organisations; in total 99 individuals were interviewed. The study indicates: • Low levels of compliance with the ‘letter’ and ‘spirit’ of the law.• Knowledge and understanding of environmental legislation was poor; no single SME, regulator or support organisation appreciated ‘environmental compliance’ as a whole.• Enforcement activity and surveillance of the SMEs audited was very low; this reflected nation enforcement figures.• The impact of environmental legislation on SMEs is overstated. The impact increased commensurate with ‘effort to comply’ and ‘enforcement action’.• There was evidence of direct and indirect environmental harm as a result of noncompliance.• Regulation can only be effective if it is complied with; measuring the link between the legislation and environmental protection must be accompanied by a clear understanding of compliance levels.This study produces an initial assessment methodology for SMEs, compliance performance indicators and recommendations to improve SME compliance controls

    Motivations to engage in last chance tourism in the Churchill Wildlife Management Area and Wapusk National Park: the role of place identity and nature relatedness

    No full text
    The threat that climate change impacts pose to rare and vulnerable destinations has given rise to a phenomenon known as last chance tourism. This travel behaviour involves tourists increasingly travelling to destinations they perceive to be critically threatened, while contributing to greenhouse gas emissions and climate change impacts in these very places. For last chance destinations to be managed effectively in the face of climate change, a clearer understanding of what drives this travel behaviour is needed. Drawing on the importance of place and nature to identity construction, this research uses a structural equation modelling approach to examine last chance tourism motivations in Churchill, Canada. Results provide evidence of a motivation to engage in a last chance experience. They also indicate that this motivation is related to a desire to share a connection to nature with similar individuals, and to become part of the local story. Beyond this, results show that visitors’ sense of place identity and nature relatedness contribute significantly to their motivation to engage in last chance tourism. Findings from this research are important to the management of last chance destinations, including protected areas that are legislated to preserve significant natural and cultural features

    The ninth data release of the Sloan Digital Sky Survey : first spectroscopic data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z ∼ 0.52), 102,100 new quasar spectra (median z ∼ 2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with Teff −0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SEGUE-2. The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the APOGEE along with another year of data from BOSS, followed by the final SDSS-III data release in 2014 December

    Measurement of charged-particle multiplicities in gluon and quark jets in p(p)over-bar collisions at root s=1.8 TeV

    Get PDF
    We report the first largely model independent measurement of charged particle multiplicities in quark and gluon jets, N-q and N-g, produced at the Fermilab Tevatron in p (p) over bar collisions with a center-of-mass energy of 1.8 TeV and recorded by the Collider Detector at Fermilab. The measurements are made for jets with average energies of 41 and 53 GeV by counting charged particle tracks in cones with opening angles of θ(c)=0.28, 0.36, and 0.47 rad around the jet axis. The corresponding jet hardness Q=E-jetθ(c) varies in the range from 12 to 25 GeV. At Q=19.2 GeV, the ratio of multiplicities r=N-g/N-q is found to be 1.64&PLUSMN; 0.17, where statistical and systematic uncertainties are added in quadrature. The results are in agreement with resummed perturbative QCD calculations
    corecore