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Abstract

Background: Coronary heart disease (CHD) is the major cause of death in the United States. Coronary artery
calcification (CAC) scores are independent predictors of CHD. African Americans (AA) have higher rates of CHD but
are less well-studied in genomic studies. We assembled the largest AA data resource currently available with
measured CAC to identify associated genetic variants.

Methods: We analyzed log transformed CAC quantity (In(CAC + 1)), for association with ~2.5 million single
nucleotide polymorphisms (SNPs) and performed an inverse-variance weighted meta-analysis on results for 5823
AA from 8 studies. Heritability was calculated using family studies. The most significant SNPs among AAs were
evaluated in European Ancestry (EA) CAC data; conversely, the significance of published SNPs for CAC/CHD in EA
was queried within our AA meta-analysis.

Results: Heritability of CAC was lower in AA (~30%) than previously reported for EA (~50%). No SNP reached
genome wide significance (p < 5E-08). Of 67 SNPs with p < 1E-05 in AA there was no evidence of association in EA
CAC data. Four SNPs in regions previously implicated in CAC/CHD (at 9p21 and PHACTRT) in EA reached nominal
significance for CAC in AA, with concordant direction. Among AA, rs16905644 (p = 4.08E-05) had the strongest
association in the 9p21 region.

Conclusions: While we observed substantial heritability for CAC in AA, we failed to identify loci for CAC at
genome-wide significant levels despite having adequate power to detect alleles with moderate to large effects.
Although suggestive signals in AA were apparent at 9p21 and additional CAC and CAD EA loci, overall the data
suggest that even larger samples and an ethnic specific focus will be required for GWAS discoveries for CAC in AA
populations.
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Background

Atherosclerotic coronary heart disease (CHD) is a com-
plex heritable condition and the major cause of death in
the United States [1]. Recent meta-analyses of genome wide
association studies (GWAS) in individuals of European
Ancestry (EA) have identified single nucleotide polymor-
phisms (SNPs) at over 30 independent regions associated
with coronary artery disease (CAD) and myocardial infarc-
tion (MI) [2-6]; however, these loci explain less than 10%
of the heritability of the disease in EA. Although the bur-
den of CHD is higher in African Americans (AA) than in
EA [7-10], there are few contemporary genetic studies of
CHD phenotypes in AA populations [11,12]. Moreover,
adequately powered CHD GWAS in AA are lacking, with
studies performed to date failing to identify any loci ap-
proaching genome wide significance [11]. The strongest
loci for CAD/MI in EA GWAS [2-6], including the 9p21
locus, have shown inconsistent signals in small studies of
AA [11] likely due to limited power and differences in
linkage disequilibrium structure among the populations.
Candidate gene studies of CHD in AA, however, have
identified causal mutations that are private to AA popula-
tions [13].

One strategy for identifying genetic factors underlying
susceptibility to CHD is to examine measures of subclin-
ical atherosclerosis. Subclinical traits, such as coronary
artery calcification (CAC), provide quantitative measures
with reduced heterogeneity compared to presence or ab-
sence of clinical disease. CAC quantity is associated with
traditional and novel CHD risk factors, is directly related
to the burden of coronary atherosclerosis on angiog-
raphy as well as autopsy, and also predicts incident CHD
events after controlling for risk factors [14-17]. CAC is
heritable in populations of EA [18-21] with estimates
ranging from 40-60%. O’Donnell et al. [22] recently
published the first large GWAS results (n=9,992) of
CAC in EAs which identified 49 SNPs in two distinct re-
gions, 9p21 and the PHACTRI gene on chromosome 6,
surpassing genome wide significance (p < 5E-08). Several
of these SNPs were previously identified in EA GWAS
of CAD/MI [2-6] providing support for CAC as a useful
phenotype for discovery of novel CHD genes [22]. The
lower prevalence of CAC in AA as compared to other
ethnic groups, particularly persons of EA [23-25], might
suggest, however, that their excess CHD rates may be
attributed to differences in hypertension, diabetes, access
to care, socioeconomic status or other CHD risk factors
with limited influence on CAC [23,26].

Here, we present the largest AA GWAS of CAC,
including 5,823 AA individuals. Using meta-analysis, we
interrogated the largest AA CAC dataset available to
date with genome wide SNP genotypes obtained as part
of study-specific projects or through the National Heart
Lung and Blood Institute (NHLBI) Candidate gene
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Association Resource (CARe) [27]. Our aims were to
estimate the heritability of CAC in AA family samples,
to perform a meta-analysis of GWAS results in an
attempt to discover novel associations, and to assess the
significance of genetic variants previously reported in
subjects of EA.

Methods

Ethics statement

Each study obtained approval from their respective institu-
tional review board and the ethics committee of each par-
ticipating institution, including the University of Alabama
at Birmingham, Washington University, University of
Mississippi Medical Center, University of Minnesota,
Northwestern University, Kaiser Permanente (Oakland,
CA), University of Washington, Columbia University,
Johns Hopkins School of Medicine, UCLA School of
Medicine, Wake Forest University School of Medicine,
University of Michigan Health Sciences and Behavioral
Sciences, and the University of Pennsylvania. All partici-
pants gave written informed consent in accordance with
institutional requirements and the principles expressed
in the Declaration of Helsinki.

Cohorts and CAC measurement
Eight cohorts (total N of 5,823) of AA participants
(Additional file 1: Supplemental Methods) with mea-
sures of CAC participated in the meta-analysis (Table 1,
Family Heart Study (FamHS), n=596; Jackson Heart
Study (JHS), n=1,388 (comprised of JHS de novo
recruited sample “JHS”, n = 1066 and a JHS sample pre-
viously enrolled in Atherosclerosis Risk in Communities
(ARIC) study (“JHS-ARIC”), n =322); Coronary Artery
Risk Development In Young Adults (CARDIA), n = 671;
Multi-Ethnic Study of Atherosclerosis (MESA), n = 1646;
MESA Family/Air, n = 934; Genetic Study of Atheroscler-
osis Risk (GeneSTAR), n = 272; and Genetic Epidemiology
Network of Arteriopathy (GENOA), n=316;). Four of
these (JHS, JHS-ARIC, CARDIA, and MESA) were geno-
typed through the NHLBI CARe [27], while FamHS,
MESA Family/Air, GeneSTAR, and GENOA subjects were
genotyped separately through funding from NHLBI. Given
the low prevalence of CAC in younger individuals, partici-
pants were excluded if they were <35 years old. Partici-
pants were also excluded if they did not consent to genetic
research or if genotype information did not meet cohort-
specific quality-control standards (Additional file 1: Table
S1 and Supplemental Methods). The definition of cardio-
vascular risk factors in each cohort is provided in the sup-
plement. Participants provided written informed consent
and protocols were approved by local institutional review
boards.

All studies assessed CAC using computed tomography
(CT, performed either by electron beam or multi-detector
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Table 1 Participant characteristics of eight participating African-American cohorts

CARe cohorts

FamHS JHST CARDIA* JHS-ARICH MESA MESA Family/Air GeneSTAR GENOA
N analyzed 596 1066 671 322 1646 934 272 316
CAC score >0, n (%) 330 (554%) 419 (39.3%) 108 (16.1%) 224 (69.6%) 726 (44.1%) 388 (41.8%) 111 (40.8%) 214 (67.7%)
CAC score mean 1758 108.8 21.7 2674 127.7 1236 49.1 252.7
CAC score, median (Q1,Q3) 08(0,73.3) 0(0,37.8) 0 (0,0 41.5 (0, 260.7) 0 (0, 53.2) 0 (0, 40.2) 0 (0, 16.0) 374 (0, 266.6)
CAC Heritability (SE) 033(0.10) 047 (017) - - - 031 (0.08)% 0 (n/a) 0.26 (0.16)
Age, mean (range) 54.1 (36-83) 51.1 (36-90) 44.5 (37-54) 65.1 (57-80)  62.2 (45-84) 580 (39-91) 51.2 (36-64) 69.6 (56-85.5)
Sex, n (% male) 202 (33.9%) 408 (383%) 244 (364%) 87 (27%) 745(453%) 375 (40.4%) 92 (33.8%) 86 (27.2%)
Current Smoker, n (%) 144 (242%) 123 (11.5%) 157 (23.5%) 30 (9.3%) 297 (18%) 190 (20.5%) 75 (27.6%) 27 (8.5%)
Diabetic, n (%) 149 (254%) 145 (13.6%) 69 (10.3%) 77 (23.9%) 263 (16%) 137 (14.8%) 50 (184%) 105 (33.2%)
Hypertension, n (%)§ 458 (76.9%) 607 (56.9%) 229 (34.1%) 243 (75.5%) 1(59.6%) 561 (60.4%) 186 (68.4%) 263 (83.2%)
Statin Users, n (%)§ 60 (10.1%) 95 (8.9%) 14 (2.1%) 53 (16.5%) 41 (14.6%) 193 (20.8%) 58 (21.3%) -
Prevalent CHD, n (%) 67 (11.2%) 46 (4.3%) 3 (1.9%) 26 (8.1%) 0 46 (4.%) 0 7 (2.2%)

*CARDIA: Year 20 data; hypertension by self-report.

1 JHS CAC data comprised of the JHS de novo recruited sample “JHS” (n = 1066) and the JHS sample previously enrolled in the ARIC study, denoted “JHS-ARIC”
(n=322). CAC data were collected in all JHS participants (JHS and JHS-ARIC) through JHS NHLBI funding. The JHS-de novo recruited sample was genotyped as a
batch via the CARe study at the Broad Institute. Genotyping of all AA ARIC participants also was performed as a separate batch via the CARe study at the Broad
Institute. The recommendation from the CARe study analysis committee was to analyze the” JHS” and “JHS-ARIC” individuals separately because QC of JHS and

ARIC genotype data was not 100% identical.

$MESA Family/Air: heritability based on n =882 in families from participants of MESA Family.

§GeneSTAR: hypertension = average of 3 measures > 140/90 mmHg and/or current use of antihypertensive medication; GENOA: Self-reported hypertension. Statin
use data was not available; MESA Family/Air: hypertension if diastolic > =90 or systolic > =140; or self-reported high blood pressure and on meds for hypertension;
FamHS, CARDIA, MESA, JHS: hypertension = measure >140/90 mm Hg and/or current use of antihypertensive medication.

CT) imaging methods (Additional file 1: Supplemental
Methods). Scans were interpreted at the corresponding
sites of the independent studies but all investigators ap-
plied standardized methods using published software and
reading algorithms [28-30]. Calcified plaque was quanti-
fied by the Agatston method [31] and the total calcium
score, summing over the individual coronary arteries (i.e.
left main, left anterior descending, circumflex, and right
coronary arteries), was used in these analyses. Each study
performed quality control in obtaining CAC measure-
ments. In order to maintain comparability to published re-
sults for samples of European descent [22], we used the
identical phenotypic transformation, In(CAC + 1), in our
primary analysis. In secondary analyses, we assessed CAC
dichotomously (present/absent), In(CAC) for those with
CAC >0 and In(CAC + 1) exclusively in the subset of older
participants (men > 50 and women > 60). These secondary
analyses produced similar results to the primary analysis
and therefore these data are not presented.

Power analysis

We estimated the power of our accumulated study sam-
ple using the software QUANTO [32,33]. We specified a
quantitative outcome with an effective number of inde-
pendent subjects (Neg = 5,186, Noa = 5,823) accounting
for the fact that several of the participating studies have
family data, and gene only effect options, inputting sam-
ple size, estimated mean and standard deviation of In
(CAC + 1), and assuming an additive genetic model. This

approach also assumes that meta-analysis is equivalent
to pooled analysis. We also varied the allelic frequency
from 0.01 to 0.4, and assessed three significance thresholds
0.05, 1E-05, and 5E-08 (two-sided). The effect size was
characterized as r?, the proportion of phenotypic variance
attributable to the SNP, which is a function of both allele
frequency and the distance between genotype-specific
means.

Genotyping data and quality control

The CARe genotyping center at the Broad Institute (for
JHS, JHS-ARIC, CARDIA, and MESA) or each individual
study (for FamHS, MESA Family/Air, GeneSTAR, and
GENOA,) was responsible for quality control for the geno-
types and imputation (details in Additional file 1: Supple-
mental Methods and summarized in Additional file 1:
Table S1). All studies used MaCH [34] (http://www.sph.
umich.edu/csg/abecasis/MaCH/) for imputation except
MESA Family/Air which used Impute [35] software
(http://mathgen.stats.ox.ac.uk/impute/impute.html). We
report results for SNPs with coded allele frequency (CAF)
between 1-99%. More stringent CAF filters were used for
MESA Family/Air (5% < CAF <95%) and CARDIA (10% <
CAF <£90%) due to small sample size, young mean age,
and high prevalence of zero CAC which resulted in
higher rates of Type I errors for SNPs with CAF less
than 5 or 10% respectively; with these more stringent
filters, the quantile-quantile (QQ) plots showed an ac-
ceptable fit (Additional file 2: Figure S1). SNPs with a
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Hardy-Weinberg equilibrium (HWE) test with p <1E-06
were excluded, as were SNPs with a call rate <0.95 or
SNPs with an imputation quality metric (r*) of less than
0.50. In each study, hybrid datasets were created for ana-
lysis by substituting measured for imputed genotypes
when available (Additional file 1: Supplemental Methods).

Heritability calculation

Five of the participating studies have family data
(FamHS, JHS, MESA Family/Air (family component),
GeneSTAR, GENOA) and a variance components model
was used to obtain maximum likelihood estimates of poly-
genic heritability for the age, age?, sex, and principal com-
ponents (only those deemed necessary for each study to
characterize population stratification, Additional file 1:
Table S1, as estimated by EIGENSTRAT [36]) adjusted re-
siduals of In(CAC+1) using the Sequential Oligogenic
Linkage Analysis Routines (SOLAR) [37] software package.

Cohort-specific analyses

For each measured or imputed SNP, each cohort provided
estimated regression coefficients and standard errors (SE),
the identity of the coded allele, its frequency (CAF), and p
for a linear regression model of In(CAC + 1) on allelic dos-
age for each SNP, using an additive genetic model. Each
cohort adjusted the analysis for the effects of age, age?,
sex, age*sex, age®*sex, CT scanner as needed, study site as
needed, and the principal components deemed necessary
for their study to characterize population stratification
estimated by EIGENSTRAT [36] (Additional file 1:
Table S1). A linear mixed effects model or Generalized
Estimating Equation was used to account for correlation
among participants in families.

Meta-analyses

An inverse variance-weighted meta-analysis with fixed
effects was used to estimate summary effects (METAL
software, http://www.sph.umich.edu/csg/abecasis/metal/
index.html) for the association of allelic dosage at each
SNP with CAC (n = 5,823). Meta-analyses were performed
independently at two sites (Washington University and
University of Pennsylvania) for quality assurance and the
results were concordant. Heterogeneity among studies
was assessed using a X* test, and there was no significant
heterogeneity for CAC quantity in our main results. We
considered genome-wide significance as p <5E-08, sug-
gestive significance as p < 1E-05, and nominal significance
as p<0.05. All tests were two-sided. SNPs reaching sug-
gestive significance were assessed for their association with
CAC in the EA CAC GWAS [22]. Conversely, we assessed
the significance in our AA CAC meta-analysis data of EA
CAC GWAS SNPs, including a close interrogation of both
the genome wide significant loci for CAC in EA data [22]:
the 9p21 region [11] and PHACTRI locus.
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Results

Sample characteristics and heritability

A description of each cohort is provided in the Additional
file 1: Supplemental Methods. Demographic and selected
risk factor characteristics of the 5,823 study participants
are described in Table 1 by cohort. Gender distribution
was similar across studies. There was, however, variation
in the age range across cohorts, e.g., CARDIA (37-54 yrs)
vs. GENOA (56-86 yrs), as well as some risk factors such
as a higher prevalence of diabetes and hypertension in
GENOA and more current smokers in GeneSTAR.
Additional file 1: Supplemental Methods and Table S1
summarizes the cohort-specific genotyping, imputation,
and quality control procedures, including the number of
SNPs used in cohort-specific analyses (ranging from 1.9
million to 2.7 million).

Power analysis

We estimated that our sample size of 5,823 represented
an effective sample size of 5,186 taking account of the
non-independent observations in the family studies.
With this sample size, we had 80% power to detect a
genetic variant accounting for as little as 0.77% of the
variance in CAC quantity with genome-wide significance
and as little as 0.15% with nominal significance (p <0.05)
(Figure 1). Our sample had >80% power to detect a vari-
ant with comparable effect size to that in 9p21 associated
with CAC in EA (effect size = 0.009, or 0.9%; unpublished
data, 2012). Thus, our AA CAC study was adequately
powered to detect effect sizes comparable to those
observed for the top associated SNPs in the EA GWAS of
CAC. However lower allele frequencies in African descent
samples could lead to a lower overall effect size, even if
the effect of the allele is the same as in European samples.

Heritability analysis

The heritability of CAC scores was estimated in each of
the five family studies (Table 1). The range of heritability
across these AA family samples (0-47%) tended to be
lower than those reported among EA CAC studies (40-
60%) [18-21]. The AA estimate in GeneSTAR (0%) may
be sensitive to the small sample size and lower preva-
lence of CAC relative to EA families, but it is consistent
with a lower heritability of CAC in AA compared to EA.
Setting aside the GeneSTAR study, we estimate the her-
itability of CAC in AA to be ~30% which still suggests
lower heritability in AA compared to EA.

Meta-analysis findings

The quantile-quantile (QQ) plot for the combined AA
GWA meta-analysis is shown in Figure 2A. Principal
components were used in each cohort-specific analysis
and lambda values were between 0.96 and 1.1, thus no
genomic control correction was applied to our results.
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Figure 1 Power curves. Power curves calculated using QUANTO [32,33] software, as described in the text. In brief, we specified a quantitative
outcome, assumed an additive genetic model and used an effective sample size of 5,186 with the estimated mean and standard deviation of

IN(CAC + 1). Allelic frequency variation did not affect the power estimates. We characterized the effect size as r

QQ plots for cohort-specific GWA analyses are shown in
Additional file 2: Figure S1. As summarized in Additional
file 1: Table S2 and shown on the Manhattan plot in
Figure 2B, our meta-analysis yielded no genome-wide
significant results and there was limited evidence of
clustering of top SNPs at a single chromosomal location.
The SNP with the smallest p value was rs749924 on
chromosome 2, p = 1.07E-07. We focused on SNPs with
p < 1E-05, which identified 67 SNPs with suggestive
statistical evidence of association with CAC (Additional
file 1: Table S2). These 67 SNPs represent 45 potentially

independent signals (using SimpleM [38]) and included
none of the loci associated with CAC in EA [22]. The
secondary analyses produced similar results to the
primary analysis and therefore these results are not
presented.

Evidence for association of suggestive AA SNPs in data
from individuals of European ancestry

We interrogated our 67 most significant SNPs (original or
best proxy, using the Broad Institutes SNP Annotation and
Proxy Search (SNAP) website; http://www.broadinstitute.
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Figure 2 Quantile-quantile and Manhattan plots of AA CAC GWAS results. A) Quantile-quantile plot for the Meta-analysis of CAC.
B) Manhattan plot for the meta-analysis of SNPs associated with CAC. No SNPs reach genome-wide significance, however SNPs above the blue

~

8 o e
- i
£ o £ ¥
1 Eor L 2
) o i i
& A % BE
nd
“1 1 8
Chromosome



http://www.broadinstitute.org/mpg/snap/ldsearch.php

Wojczynski et al. BMC Medical Genetics 2013, 14:75
http://www.biomedcentral.com/1471-2350/14/75

org/mpg/snap/ldsearch.php) for their association with CAC
in the CHARGE meta-analysis of individuals of EA
[22]. Of these 67 SNPs with suggestive CAC association
(p <1E-05) in AA, three (one each in SOX9, PRKCA,
and NRGI) reached nominal significance (p <0.05) for
association with In(CAC +1) in CHARGE EA data
(Additional file 1: Table S2). However, 2 of the 3 SNPs
(in SOX9 and PRKCA) showed association in an incon-
sistent allelic direction of effect and while rs1462872 in
NRG1 demonstrated an association in the same direc-
tion, the p value in EA was 0.05. Due to multiple testing
comparisons and given this single isolated hit in a rela-
tively large gene, we suspect this association is a false
positive result, suggesting that there was no meaningful
evidence for replication of these AA SNP signals in the
CHARGE EA sample.

Interrogation of reported EA CHD GWAS signals in this
AA CAC GWAS

We amassed EA CHD GWAS signals (for CAC and for
CAD/MI e.g., with specific focus on the 9p21 region and
PHACTRI locus) to assess their signals in the AA CAC
GWAS results.

EA CAC GWAS signals in African Americans

Recently, O’'Donnell and colleagues [22] identified several
SNPs that were genome-wide significant in two regions
in a GWAS of CAC in EA. These regions, 9p21 and
PHACTRI on 6p24.1, are also associated with CAD/MI
[2-6]. We queried these SNPs (or their proxies, identi-
fied using SNAP) for CAC association in AAs. Of 49
SNPs reaching genome-wide significance for CAC in
EAs, 44 (89.8%) had the same direction of effects on
CAC in AAs. Six of these directionally consistent SNPs
also had a p-value <0.1 in AA, which we consider nom-
inally significant for a one-sided test suggesting modest
enrichment for EA CAC alleles within our AA sample
(EA CAC GWAS significant SNPs with replication p
values <0.10 in AA CAC meta-analysis shown in
Table 2, results for all previously reported suggestive
SNPs (p<1E-05) in EA CAC have AA CAC results
reported in Additional file 1: Table S3).

EA CAD GWAS signals in African Americans

Since CAC is a strong indicator of risk for cardiovascu-
lar endpoints, we interrogated top genome-wide signifi-
cant SNPs (or their proxies) from large GWAS meta-
analyses in EA for CAD/MI [2-6] in our AA CAC
results. Of 34 SNPs at previously identified loci for
CAD/MI in EA [5], 25 (73.5%) had the same direction of
effects on CAC in AAs but none, including the top EA
9p21 SNP, were nominally significant in our AA data
(Additional file 1: Table S4).
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Signals from the 9p21 fine mapping regions defined for
EA and AA

We queried the association in AA of 166 SNPs within the
EA region for CAD and CAC in the 9p21 region, and we
identified 24 SNPs with nominal evidence for association
(p<0.05). The peak AA CAC association mapped to a
different SNP than those reported in other populations
and to a smaller linkage disequilibrium (LD) region
reported in the CARe fine mapping effort for CHD in AA
[11], with the strongest association at rs16905644. (CAF
0.11, p=4.07E-05; Bonferroni correction for 166 SNPs
tested, p = 0.0068; Figure 3). Overall, ten of these 24 nom-
inally associated SNPs localized within this smaller AA
region, but fourteen lay outside this AA region but still
within the larger EA region (Additional file 1: Table S5).
However, neither the strongest 9p21 EA SNPs for CAC
(rs1333049) or CAD (rs4977574) in EA nor rs6475606 or
rs3217989 at 9p21, recently reported to be associated with
CHD in AA [40] were among these nominally significant
signals (Figure 3 and Additional file 1: Table S5).

Signals from the PHACTR1 locus for CAC and CAD in EA
We queried the association in AA of approximately 20
SNPs within the EA region for CAD and CAC in
PHACTRI [3,5,22] and we identified no SNP with even
nominal evidence for association (p <0.05). However, of
these 20 SNPs, the lead SNP from the EA CAC analysis,
rs9349379, had a p-value of 0.09 in the AA CAC analysis
with similar direction of effect, but the allele frequency
was markedly different (CAF EA =0.59; CAF AA =0.90).
We further examined all SNPs within PHACTRI (12.7-
13.3 megabases) in the AA CAC GWAS, including a com-
parison of the LD structure of this region in EA and AA
populations. The most significant PHACTRI association
in our AA CAC GWAS was an intronic SNP, rs7768030
(p = 0.004, Additional file 1: Table S7 for all results), which
is located 80.9 kb from the lead EA CAC SNP, and even
further from the lead EA MI SNP, rs12526453 [3,5]. The
rs7768030 SNP is not in long range LD with these two EA
SNPs, as evidenced from data from HapMap (Additional
file 1: Table S8). Indeed, based on HapMap, there are
marked differences between AA and EA LD patterns in
this region (Additional file 3: Figure S2); we present the
regional plots in EA and AA for the FamHS CAC data
around these top hits in PHACTRI (rs9349379 and
rs7768030, respectively; Additional file 4: Figure S3). Over-
all, based on these analyses, there may be a signal for CAC
in AA at PHACTRI but in a different region of this large
gene than that observed for CAC and CAD/MI in EA.

Discussion

Despite higher rates of CHD in AA [8], adequately
powered genomic studies in this population are lacking.
We leveraged data from almost all available US-based
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Table 2 CHARGe European ancestry CAC meta-analysis [22] SNP top hits with nominal significance in the African American CAC meta-analysis

EA CHARGE meta-analysis results (n = 9,992) AA CAC meta-analysis look-up (n = 5,823)
SNP Chrom Position Closest Rolet Coded Coded Effect SEf p+ Direction of point estimate Coded Coded Effect SE p Direction of point estimate
gene allele allele for the association § allele allele for the association §
freq freq
rs3218020 9 21997872 CDKN2A A 0.34 0.19 003 253E- +++++ A 0.15 0.15 005 0002 +++-++--
09
rs1537375 9 22116071 CDKNZ2B T 0.50 —-024 003 506E- ----- T 0.33 -0.08 004 003 +------ +
16
159349379 6 12903957 PHACTRT intron A 0.59 -021 003 265F- ---+- A 0.90 -0.14 008 007 -+7+--++
11
154977575 9 22124744 CDKN2B C 052 -0.27 003 993E- ----- C 0.12 -009 005 008 --—-+---+
19
rs1333042 9 22103813 CDKNZ2B A 0.51 —-024 003 454E- ----- A 0.12 -0.09 005 009 +---+---
16
rs10511701 9 22112599 CDKN2B T 049 —-024 003 448E- ----- T 0.28 —-0.07 004 009 +--—-+--+
16

tIf no role indicated, then is outside known gene boundaries.

#SE: Standard error; p: p-value.

§Order of studies: for EA CHARGE: Age, Gene/Environment Susceptibility Study—Reykjavik (AGES), Rotterdam Study-Il, Framingham Heart Study, GENOA, Rotterdam Study-I; and for AA CAC: FamHS, JHS, CARDIA, JHS-
ARIC, MESA, MESA Family/Air, GeneSTAR, GENOA. GWAS results from each study were completed independently, thus data availability varied by study depending on study specific imputation quality and genotyping
quality control for each SNP. Therefore not all studies had results for all SNPs.
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Figure 3 LocusZoom plots of the 9p21 region. Fine mapping of the 9p21 region using LOCUS ZOOM [39]. The top plot uses data from MIGen
[3] for the Caucasian CHD associations (lead EA SNP is rs4977574 on right and lead AA SNP from CARe CHD is rs6475606 on left). The second
plot demonstrates the AA CHD associations, highlighting the same two SNPs as the first graph [11]. The third plot depicts the EA CAC
associations [22] and its lead SNP, rs1333049. The final plot depicts our AA CAC associations with lead SNP rs16905644 (AA CAC meta-analysis
associations for all these SNPs are in Additional file 1: Supplemental Table S5). In all plots, the region associated with EA is broader than the
region associated with AAs and the top results for AA CAC are in the same region as that associated with CHD in AA [11].

studies of CAC in AAs and performed a meta-analysis
of their GWAS results with the goal of identifying novel
loci using this validated marker of subclinical coronary
atherosclerosis and predictor of CHD. Using this largest
collection of CAC in AAs, we observed substantial herit-
ability for CAC in AA, albeit lower than that reported
for EA [18-21], and we failed to reveal loci for CAC at
genome-wide significant levels despite having adequate
power to detect common alleles with moderate to large
effect sizes. We found no credible support for our top
AA GWAS meta-analysis findings in the EA CHARGE
CAC GWAS [22]. We note that we were not able to per-
form the ideal replication, which would be a separate
analysis of CAC in an independent AA sample. The ma-
jority of genome wide significant loci identified for CAC
in EA (49 SNPs in 2 gene regions) [22] and CAD/MI in
EA (34 SNPs at 34 distinct regions) [2-6] had the same
direction of allelic effect in our AA GWAS data but only
four reached nominal significance (p <0.05) with similar
direction of effect. Because inconsistent findings be-
tween AA and EA might represent genetic differences
between the populations, we interrogated SNP associa-
tions across the 9p21 region [5,22,41] which has docu-
mented distinct LD structure among individuals of EA
and individuals of AA [11] and SNP associations across
PHACTRI [22]. Indeed, in the 9p21 region we detected
a SNP with suggestive evidence of an association with
CAC in AA (rs16905644, p =4.07E-05) but within the
smaller region of LD in AA. At the PHACTRI locus, there
were distinct patterns of LD and allele frequencies in Afri-
cans compared to Europeans with a weak association of
PHACTRI SNPs with CAC in AA at some distance from
that for CAC and CAD/MI in EA, but still within the rec-
ognized gene boundaries. Although this is suggestive of a
separate signal in PHACTRI among AA, further fine map-
ping and interrogation of rare variants is required to deter-
mine if PHACTRI is a bona fide locus for CAC in AA
populations. Despite modest suggestive findings in AA at
9p21 and some other CAC and CAD EA loci, these data
suggest that even larger samples than we analyzed with
race specific fine mapping will be required for CAC
GWAS discoveries in AA populations.

The lack of novel or strong confirmatory signals in our
analysis of AA samples may be attributable to several
factors. Although we had adequate power to detect
effects similar to those observed for the strongest loci in

EA, it is possible that the actual marginal genetic effects
in AAs are smaller. It seems unlikely, however, that this
is the whole explanation for the apparent lack of overlap
between EA and AA signals for CAC. One factor that
may attenuate signals in AAs is the smaller haplotype
blocks (decreased levels and range of LD across the gen-
ome) as compared with EA populations [5,22,41]. As a
consequence, it is possible that the imputed reference
panel of SNPs used in this study are inadequate tags of
the AA genome with the consequence that we may miss
functional SNP signals due to inadequate coverage.
Lower LD between measured tag variants and unmeas-
ured functional variants will result in a net decrease in
effect size and, thus, lower power for detection. This
concern can be addressed with denser, race-specific gene
maps or sequencing in AA populations, but until then,
we cannot verify the relevance of EA variants in AAs.

Another factor that may affect our ability to detect
trait loci relates to racial differences in the heritability of
the CAC trait. We estimated the heritability of CAC in
several participating AA family studies, and found up to
47% of the CAC variance to be influenced by the genetic
variation, with a lower bound estimate of zero for one
study. Setting aside this study with 0% heritability, the
heritability of CAC in AA is ~30% which is lower than
that reported in EA samples (~50%) [18-21]. Heritability
estimates may reflect population differences between AA
and EA samples in known risk factors for CAC, but
comparison between race, within studies (e.g., in FamHS
33% for AA vs. 45% for EA, North et al. [21]; in
GeneSTAR 0% for AA vs. 27% for EA) reinforces the
possibility of differences between AA and EA in the im-
pact of genetic variation on CAC. This apparent lower
level of CAC heritability in AAs could reflect a relatively
greater importance of non-genetic factors and gene by
environment interactions as compared to additive gen-
etic effects [42].

It is also possible that different biological pathways or
different genetic variants within the same pathways are at
play resulting in genetic heterogeneity between European
and African ancestral populations in the mechanisms lead-
ing to atherogenesis and CAC. This is borne out by the
observation that greater CAC burden is associated with
higher levels of European admixture in AA populations
[43], suggesting that genetic variants specific to EA play a
more important role in the development of CAC than
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those of African origin. Indeed, there are several lines of
evidence suggesting distinct pathophysiology of CAC in
AAs, including lower CAC scores despite greater risk
factor burden and higher rates of CHD in AA samples
[7,9,10,23,24,26,44-46]. Therefore, while some EA variants
may play a role in atherosclerosis in AA, other distinct
pathways may be important. In this case, validation in EA
populations, as we attempted, would not be expected to
succeed. Finally, environmental factors, either by them-
selves or interacting with genetic background, may have a
more prominent role in CAC and atherosclerosis in AA
than genetic effects. CAC scores do, however, predict
CHD events in AA [16] samples suggesting that larger
studies pursuing genetic discoveries using CAC in AA
should provide some insights into mechanisms and risk of
CHD in this population.

Our study has several strengths. First, it is the largest
GWAS of any sub-clinical atherosclerosis trait in AAs.
Second, it leverages data from nearly all AA cardiovascu-
lar cohort studies and represents a cross-section of the
US AA population. An attribute of our study was the a
priori planning such that GWAS datasets were analyzed
using raw data from the cohorts in a pre-specified man-
ner rather than a post-hoc combination of results,
followed by attempted validation of our top findings in
EA GWAS CAC datasets. Third, we used multiple fam-
ily datasets to obtain heritability estimates of CAC in
AA. Finally, although the results of this work are largely
negative, it highlights the need to pursue additional gen-
etic epidemiological studies of CHD in AA populations.

Our study also has several limitations. Although our
sample was the largest GWAS of a sub-clinical athero-
sclerosis trait in AAs and powered for loci with compar-
able effect sizes to the strongest loci identified in EA
GWAS, this study was underpowered to discover SNPs
with small effects. We lacked a positive control genotype
that could support the power of our study to detect
expected genetic effects for CAD; PCSK9 and LPA geno-
types associated with CAD in AA were not genotyped
and lacked proxy SNPs in our data. However, we did
interrogate the well-documented 9p21 and PHACTRI
regions, including the known different LD structure in
the 9p21 region [5,22,41] as a potential positive control;
indeed, this 9p21 analysis, using an appropriate ethnic-
specific LD focus, did provide suggestive/nominal evi-
dence for 9p21 locus effects on CAC in AA; and weak
evidence for PHACTRI locus effects on CAC in AA.

Conclusion

In summary, our results for the largest AA CAC GWAS
amassed to date are remarkable in two respects: first, in
the lack of support in EA data for the top signals arising
from AA data and second, in the weak support for asso-
ciation of EA CAC [22] and CAD and MI loci [2-6] in
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our AA sample. Substantial biological differences in the
genomic architecture of CAC, atherosclerosis and clinical
CHD between AA and EA populations are likely.
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Table S2. AA CAC meta-analysis SNP ‘top hits" and their assessment in
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Americans of SNPs previously associated with CAC in the CHARGe EA
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results from each study.

Additional file 3: Figure S2. Linkage disequilibrium plots from
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lead EA CAC SNP from O'Donnell et al, rs9349379; purple arrow points to
AA CAC meta-analysis lead SNP in PHACTR1, rs7768030; green arrow is
152026458 from O'Donnell et al; orange arrow is rs12526453 from MIGEN
and CardioGRAM. As depicted, there is vastly different LD structure
between these populations and these SNPs are in different LD blocks.

Additional file 4: Figure S3. Regional plots of association results for
the region from 12.7 Mb - 13.3 Mb in PHACTRI. This uses A) EA CAC data
from FamHS (in house data) and B) AA CAC meta-analysis results. There
is little LD between the two top hits, rs9349379 in EA and rs7768030 in
AA (purple diamonds in figure); however they may be tagging some
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