5,763 research outputs found

    Fracture Toughness Testing with Notched Round Bars

    Get PDF
    Current fracture toughness testing is conducted with planar specimens, such as the compact tension C(T) specimen and the single edge bend SE(B) specimen. The crack front in a planar specimen has a constraint condition which varies through the thickness from plane stress on the lateral surfaces to plane strain in the middle of the specimen. This change in constraint makes the geometry of planar specimens three-dimensional; however, two-dimensional analyses based on the assumption of plane stress or plane strain are often performed. An alternative specimen geometry is the notched round bar (NRB). This axisymmetric geometry has the advantage of constant constraint in the circumferential direction. Additionally, the NRB geometry can be modeled using an axisymmetric formulation--essentially a two-dimensional analysis. The suitability of the notched round bar geometry for fracture toughness testing was studied. Notched round bars with finite notch root radii were loaded to failure in tension to generate load-displacement curves. In an effort to simplify test methodology, no fatigue precracking was done. Four different materials with a range of strength and hardening characteristics were tested: 2024-T351 aluminum alloy, averaged 2024, a modified A302B pressure vessel steel and nylon 6/6. Three different notch root radii ρ were used. The apparent fracture toughness values using finite ρ were linearly extrapolated to a zero notch root radius to infer sharp-crack fracture toughness. For the 2024-T351 and the modified A302B KRB specimens, apparent fracture toughness KJcversus √ρ was extrapolated to √ρ = 0. The extrapolated fracture toughness values closely agreed with fracture toughness values obtained from precracked C (T) specimens. The NRB results for modified A302B were used to determine To, the reference temperature in a three-parameter Weibull model for characterizing the ductile to brittle transition. The resulting N RB master curve agreed closely to the master curve developed from precracked C(T) specimens. For the averaged 2024 and the nylon 6/6 NRB specimens, apparent fracture toughness J = J(ρ) versus crack extension ∆a were plotted. A JQ construction, similar to the construction in the ASTM E813 JIc test method, was used to determine apparent initiation fracture toughness JQ(p). A plot of JQ(ρ) versus p was linearly extrapolated to p = 0. The NRB results compared favorably to the results obtained from precracked C(T) and SE(B) specimens. However, the amount of stable crack growth obtained with the NRB geometry was very small---an order of magnitude smaller than that obtained with the planar specimens. In performing this research, three key technological advances in fracture mechanics and plasticity were used. The first advance was the previously mentioned extrapolation procedure to relate apparent fracture toughness for notched specimens with sharp-crack fracture toughness. The second advance was the use of the load separation method to determine J and ∆a without direct crack length measurement. The third advance was the inclusion of hydrostatic stress effects on yielding in the nonlinear finite element analyses of the KRB geometry. The application of these three technological advances was essential to the successful outcome of this research. The conclusions reached in this study are threefold. First, the notched round bar geometry is a suitable alternative to current planar geometries for K-based initiation fracture toughness testing. Second. the NRB geometry is an attractive al­ternative for KJc fracture toughness testing in the transition range of ferritic steels. Third, although a J-R curve can be developed using the NRB geometry, the small amount of stable crack growth obtained severely limits the use of notched round bars. Based on these conclusions. it is recommended that further studies involving the notched round bar be made

    Essential Fish Habitat project status report

    Get PDF
    : Groundfish that associate with rugged seafloor types are difficult to assess with bottom-trawl sampling gear. Simrad ME70 multibeam echosounder (MBES) data and video imagery were collected to characterize trawlable and untrawlable areas, and to ultimately improve efforts to determine habitat-specific groundfish biomass. The data were collected during two acoustic-trawl surveys of the Gulf of Alaska (GOA) during 2011 and 2012 by NOAA Alaska Fisheries Science Center (AFSC) researchers. MBES data were collected continuously along the trackline, which included parallel transects (1-20 nmi spacing) and fine-scale survey locations in 2011. Video data were collected at camera stations using a drop camera system. Multibeamderived seafloor metrics were overlaid with the locations of previously conducted AFSC bottomtrawl (BT) survey hauls and 2011 camera stations. Generalized linear models were used to identify the best combination of multibeam metrics to discriminate between trawlable and untrawlable seafloor for the region of overlap between the camera stations or haul paths and the MBES data. The most discriminatory models were chosen based on the Akaike information criterion (AIC). The two best models were developed using data collected at camera stations with either oblique incidence backscatter strength (Sb) or mosaic Sb in combination with bathymetric position index and seafloor ruggedness and described over 54% of the variation between trawlable and untrawlable seafloor types. A map of predicted seafloor trawlability produced from the model using mosaic Sb and benthic-terrain metrics demonstrated that 58% of the area mapped (5,987 km2 ) had \u3e 50% probability of being trawlable and 42% of being untrawlable. The model predicted 69% of trawlable and untrawlable haul locations correctly. Successful hauls occurred in areas with 62% probability of being trawlable and haul locations with gear damage occurred in areas with a 38% probability of being trawlable. This model and map produced from multibeamderived seafloor metrics may be used to refine seafloor interpretation for the AFSC BT surveys and to advance efforts to develop habitat-specific biomass estimates for GOA groundfish populations

    Linear elastic fracture mechanics primer

    Get PDF
    This primer is intended to remove the blackbox perception of fracture mechanics computer software by structural engineers. The fundamental concepts of linear elastic fracture mechanics are presented with emphasis on the practical application of fracture mechanics to real problems. Numerous rules of thumb are provided. Recommended texts for additional reading, and a discussion of the significance of fracture mechanics in structural design are given. Griffith's criterion for crack extension, Irwin's elastic stress field near the crack tip, and the influence of small-scale plasticity are discussed. Common stress intensities factor solutions and methods for determining them are included. Fracture toughness and subcritical crack growth are discussed. The application of fracture mechanics to damage tolerance and fracture control is discussed. Several example problems and a practice set of problems are given

    Conserved Sequence Processing in Primate Frontal Cortex.

    Get PDF
    An important aspect of animal perception and cognition is learning to recognize relationships between environmental events that predict others in time, a form of relational knowledge that can be assessed using sequence-learning paradigms. Humans are exquisitely sensitive to sequencing relationships, and their combinatorial capacities, most saliently in the domain of language, are unparalleled. Recent comparative research in human and nonhuman primates has obtained behavioral and neuroimaging evidence for evolutionarily conserved substrates involved in sequence processing. The findings carry implications for the origins of domain-general capacities underlying core language functions in humans. Here, we synthesize this research into a 'ventrodorsal gradient' model, where frontal cortex engagement along this axis depends on sequencing complexity, mapping onto the sequencing capacities of different species

    Early Surgery for Traumatic Spinal Cord Injury: Where Are We Now?

    Get PDF
    Study Design: Narrative review. Objective: There is a strong biological rationale to perform early decompression after traumatic spinal cord injury (SCI). With an enlarging clinical evidence base, most spine surgeons internationally now favor early decompression for the majority of SCI patients; however, a number of pertinent questions remain surrounding this therapy. Methods: A narrative review evaluating the status of early surgery for SCI. In particular, we addressed the following questions: (1) Which patients stand to benefit most from early surgery? 2) What is the most appropriate time threshold defining early surgery? Results: Although heterogeneity exists, the evidence generally seems to support early surgery. While the best evidence exists for cervical SCI, there is insufficient data to support a differential effect for early surgery depending on neurological level or injury severity. When comparing thresholds to define early versus late surgery-including a later threshold (48-72 hours), an earlier threshold (24 hours), and an ultra-early threshold (8-12 hours)-the 2 earlier time points seem to be associated with the greatest potential for improved outcomes. However, existing prehospital and hospital logistics pose barriers to early surgery in a significant proportion of patients. An overview of recommendations from the recent AOSpine guidelines is provided. Conclusion: In spite of increasing acceptance of early surgery post SCI, further research is needed to (1) identify subgroups of patients who stand to derive particular benefit-in particular to develop more evidence-based approaches for central cord syndrome and (2) investigate the efficacy and feasibility of ultra-early surgery targeting more aggressive timelines

    Polarization restricts hepatitis C virus entry into HepG2 hepatoma cells

    Get PDF
    The primary reservoir for hepatitis C virus (HCV) replication is believed to be hepatocytes, which are highly polarized with tight junctions (TJ) separating their basolateral and apical domains. HepG2 cells develop polarity over time, resulting in the formation and remodeling of bile canalicular (BC) structures. HepG2 cells expressing CD81 provide a model system to study the effects of hepatic polarity on HCV infection. We found an inverse association between HepG2-CD81 polarization and HCV pseudoparticle entry. As HepG2 cells polarize, discrete pools of claudin-1 (CLDN1) at the TJ and basal/lateral membranes develop, consistent with the pattern of receptor staining observed in liver tissue. The TJ and nonjunctional pools of CLDN1 show an altered association with CD81 and localization in response to the PKA antagonist Rp-8-Br-cyclic AMPs (cAMPs). Rp-8-Br-cAMPs reduced CLDN1 expression at the basal membrane and inhibited HCV infection, supporting a model where the nonjunctional pools of CLDN1 have a role in HCV entry. Treatment of HepG2 cells with proinflammatory cytokines, tumor necrosis factor alpha and gamma interferon, perturbed TJ integrity but had minimal effect(s) on cellular polarity and HCV infection, suggesting that TJ integrity does not limit HCV entry into polarized HepG2 cells. In contrast, activation of PKC with phorbol ester reduced TJ integrity, ablated HepG2 polarity, and stimulated HCV entry. Overall, these data show that complex hepatocyte-like polarity alters CLDN1 localization and limits HCV entry, suggesting that agents which disrupt hepatocyte polarity may promote HCV infection and transmission within the liver

    Electrochemical Solutions for Advanced Life Support

    Get PDF
    The Oxygen Generating Assembly (OGA) on-board the International Space Station (ISS) employs a polymer electrolyte membrane (PEM) water electrolysis cell stack to electrochemically dissociate water into its two components oxygen and hydrogen. Oxygen is provided to the cabin atmosphere for crew respiration while the hydrogen is delivered to a carbon dioxide reduction system to recover oxygen as water. The design of the OGA evolved over a number of years to arrive at the system solution that is currently operational on ISS. Future manned missions to space will require advanced technologies that eliminate the need for resupply from earth and feature in-situ resource utilization to sustain crew life and to provide useful materials to the crew. The architects planning such missions should consider all potential solutions at their disposal to arrive at an optimal vehicle solution that minimizes crew maintenance time, launch weight, installed volume and energy consumption demands. Skyre is developing new technologies through funding from NASA, the Department of Energy, and internal investment based on PEM technology that could become an integral part of these new vehicle solutions. At varying stages of Technology Readiness Level (TRL) are: an oxygen concentrator and compressor that can separate oxygen from an air stream and provide an enriched oxygen resource for crew medical use and space suit recharge without any moving parts in the pure oxygen stream; a regenerative carbon dioxide removal system featuring a PEM-based sorbent regenerator; a carbon dioxide reduction system that electrochemically produces organic compounds that could serve as fuels or as a useful intermediary to more beneficial compounds; and an electrochemical hydrogen separator and compressor for hydrogen recycle. The technical maturity of these projects is presented along with pertinent performance test data that could be beneficial in future study efforts

    The Spatial Distribution of Atomic Carbon Emission in the Giant Molecular Cloud NGC 604-2

    Full text link
    We have mapped a giant molecular cloud in the giant HII region NGC 604 in M33 in the 492 GHz ^3P_1 -- ^3P_0 transition of neutral atomic carbon using the James Clerk Maxwell Telescope. We find the distribution of the [CI] emission to be asymmetric with respect to the CO J=1--0 emission, with the peak of the [CI] emission offset towards the direction of the center of the HII region. In addition, the line ratio I_{[CI]}/I_{CO} is highest (~ 0.2) facing the HII region and lowest (< 0.1) away from it. These asymmetries indicate an edge-on morphology where the [CI] emission is strongest on the side of the cloud facing the center of the HII region, and not detected at all on the opposite side This suggests that the sources of the incident flux creating C from the dissociation of CO are the massive stars of the HII region. The lowest line ratios are similar to what is observed in Galactic molecular clouds, while the highest are similar to starburst galaxies and other regions of intense star formation. The column density ratio, N(C)/N(H_2) is a few times 10^{-6}, in general agreement with models of photodissociation regions.Comment: Accepted for publication in ApJ. 8 pages, 5 figures, 3 table
    corecore