119 research outputs found

    Thermal and structural response of in situ prepared biobased poly(ethylene 2,5-furan dicarboxylate) nanocomposites

    Get PDF
    Poly(ethylene 2,5-furan dicarboxylate) (PEF) is considered the biobased counterpart of the fossil based poly(ethylene terephthalate) for food packaging. In this research, PEF nanocomposites containing 2.5 wt% neat multi walled carbon nanotubes (MWCNTs), or functionalized MWCNTs or graphene oxide (GO), were in situ prepared by applying the melt polycondensation method. The nanocomposites showed faster crystallization rates compared to the pristine material as proved by both differential scanning calorimetry (DSC) and polarized light microscopy (PLM). The latter evidenced an increased nucleation density in nanocomposites, due to the nucleating efficiency of the fillers, resulting in smaller spherulite size. However, a slightly reduced thermal stability was revealed for the nanocomposites by thermog-ravimetric analysis (TGA), especially in the case of GO-containing samples. The solid structure of the materials was studied by performing real time X-ray diffraction (XRD) measurements. In neat PEF, beta-crystals were observed in the solvent treated sample, while alpha-crystals were formed on cooling from the melt or cold-crystallization. On the contrary, in the XRD patterns of the nanocomposites only peaks associated with the alpha-crystal phase were found. Last, but not least, the effect of recrystallization on the thermal behavior was evaluated by means of modulated temperature DSC (MDSC). (C) 2016 Elsevier Ltd. All rights reserved

    Green Pathways for the Enzymatic Synthesis of Furan-Based Polyesters and Polyamides

    Get PDF
    The attention towards the utilization of sustainable feedstocks for polymer synthesis has grown exponentially in recent years. One of the spotlighted monomers derived from renewable resources is 2,5-furandicarboxylic acid (FDCA), one of the most promising bio-based monomers, due to its resemblance to petroleum-based terephthalic acid. Very interesting synthetic routes using this monomer have been reported in the last two decades. Combining the use of bio-based monomers and non-toxic chemicals via enzymatic polymerizations can lead to a robust and favorable approach towards a greener technology of bio-based polymer production. In this chapter, a brief introduction to FDCA-based monomers and enzymatic polymerizations is given, particularly focusing on furan-based polymers and their polymerization. In addition, an outline of the recent developments in the field of enzymatic polymerizations is discussed. </p

    Functionalized self-organized peptide materials

    No full text

    Liquid crystalline polymers from renewable resources: Synthesis, characterization, and applications in composites.

    No full text
    Thermotropic polyesters are an important class of materials for high erformance applications. Their low melt viscosities, low thermal expansion coefficients, high use temperatures, and ease in processing allow for the production of high strength and high modulus fibers, films, or compression-molded articles. In this work we explore the synthesis, melt extrusion, fiber spinning, and performance of thermotropic liquid-crystalline polyesters from renewable resources (BioLCP). Special focus is on the application of the bio-based monomers vanillic acid and 2,5-furandicarboxylic acid and their added value and functionality on BioLCP properties. Through the application of a melt-polycondensation reaction at mild temperatures ( 600 %). Overall this technique allows for control over the crystallization morphology in processed products by simply controlling the morphology and placement of the LCP filler. References. Wilsens, C.H.R.M.; Noordover, B.A.J.; Rastogi, S.; Polymer, 2014, 55, 2432 Wilsens, C.H.R.M.; Verhoeven, J.M.G.A.; Noordover, B.A.J.; Hansen, M.R.; Auhl, D.; Rastogi, S.; Macromolecules, 2014, 47, 3306. Wilsens, C.H.R.M.; Deshmukh, Y.S.; Liu, W.; Noordover, B.A.J.; Yao, Y.; Meijer, H.E.H.; Rastogi, S.; Polymer, 2015, 60, 198. Wilsens, C.H.R.M.; Pepels, M.P.F.; Spoelstra, A.B.; Portale, G.; Auhl, D.; Deshmukh, Y.S.; Harings, J.A.W.; Macromolecules, 2016, 49, 2228

    Use of Bis(pyrrolidone)-Based Dicarboxylic Acids in Poly(ester-amide)-Based Thermosets:Synthesis, Characterization, and Potential Route for Their Chemical Recycling

    No full text
    In this study, we report on the synthesis and characterization of thermosets based on the renewable N,N′-octamethylene-bis(pyrrolidone-4-carboxylic acid) (BP-C8) and 1,3-bis(4,5-dihydro-2-oxazolyl)benzene (IAox). The BP-C8, having two pyrrolidone rings, is obtained via a bulk aza-Michael addition reaction of 1,8-diaminooctane with 2 equiv of itaconic acid using water as catalyst. Thermosets are prepared by mixing the desired ratio of BP-C8 with IAox, followed by thermal curing at 180 °C. The cross-link density of the thermosets is controlled by the usage of an excess of bis(2-oxazoline), and achievement of full conversion is confirmed by Fourier transform infrared spectroscopy. As anticipated, the glass transition temperature of the thermosets increases with increasing cross-linking density to values up to 100 °C. All thermosets are found to absorb water upon storage, resulting in a strong plasticizing effect and thus a suppression of the glass transition temperature. To assess the role of water on the thermo-mechanical properties, all thermosets are exposed to various relative humidities and their mechanical performance is evaluated. In general, we observe that the suppression in Tg under the influence of water facilitates a brittle-to-ductile transition as the Tg of the thermosets approaches room temperature. Additionally, in this study we demonstrate that hydrolysis of the ester bonds in the thermosets can be enforced at elevated temperatures in the presence of water, resulting in the liberation and migration of BP-C8 monomer. Interestingly, BP-C8 can readily be isolated by filtration as it crystallizes from water during cooling, thereby providing a promising route for its chemical recycling. Overall, these findings indicate that water plays a pivotal role in these poly(ester–amide)s as it functions as a catalyst in the BP-C8 synthesis, governs the thermal and mechanical properties of the thermosets, and opens up routes for chemical recycling of BP-C8 after hydrolysis as it acts as a recrystallization (co)solvent

    Liquid crystalline polymers from renewable resources: Synthesis, characterization, and applications in composites.

    No full text
    Thermotropic polyesters are an important class of materials for high erformance applications. Their low melt viscosities, low thermal expansion coefficients, high use temperatures, and ease in processing allow for the production of high strength and high modulus fibers, films, or compression-molded articles. In this work we explore the synthesis, melt extrusion, fiber spinning, and performance of thermotropic liquid-crystalline polyesters from renewable resources (BioLCP). Special focus is on the application of the bio-based monomers vanillic acid and 2,5-furandicarboxylic acid and their added value and functionality on BioLCP properties. Through the application of a melt-polycondensation reaction at mild temperatures ( 600 %). Overall this technique allows for control over the crystallization morphology in processed products by simply controlling the morphology and placement of the LCP filler. References. Wilsens, C.H.R.M.; Noordover, B.A.J.; Rastogi, S.; Polymer, 2014, 55, 2432 Wilsens, C.H.R.M.; Verhoeven, J.M.G.A.; Noordover, B.A.J.; Hansen, M.R.; Auhl, D.; Rastogi, S.; Macromolecules, 2014, 47, 3306. Wilsens, C.H.R.M.; Deshmukh, Y.S.; Liu, W.; Noordover, B.A.J.; Yao, Y.; Meijer, H.E.H.; Rastogi, S.; Polymer, 2015, 60, 198. Wilsens, C.H.R.M.; Pepels, M.P.F.; Spoelstra, A.B.; Portale, G.; Auhl, D.; Deshmukh, Y.S.; Harings, J.A.W.; Macromolecules, 2016, 49, 2228

    The (dis)advantages of 2,5-furandicarboxylic acid in polycondensates.

    No full text
    Abstract The production of renewable monomers and polymers from a renewable feedback has attracted significant interest from both academia and industry over the last decades. One successful example of such a renewable monomer is 2,5-furandicarboxylic acid (2,5-FDCA), a building block for the production of poly(ethylene 2,5-furandicarboxylate) (PEF). PEF has proven to exhibit superior barrier properties (O2 and CO2 permeability) compared to its terephthalic acid based counterpart poly(ethylene terephthalate). This makes PEF a highly interesting candidate as packaging material for, as example, carbonated liquids. In fact, Synvina, a joint venture of BASF and Avantium, is currently building a 50,000 ton plant for commercial production of PEF. This example clearly identifies 2,5-FDCA as a monomer of interest for the production of polyester materials with excellent barrier properties. However, detailed studies on the performance of 2,5-FDCA in other polycondensates such as polyamides or poly(ester-amide)s has not been explored in the past. In this presentation we evaluate the effect of 2,5-FDCA on the crystallinity, the water absorption, and thermal stability of such polycondensate materials. Furthermore, several unique features originating from the 2,5-FDCA moiety, their potential for applications, and their concomitant downsides and limitations are discussed. Biography Karel Wilsens (1987) obtained his PhD degree in Polymer Technology from the faculty of Chemical Engineering of the Technical University of Eindhoven in 2015. After this period he joined Maastricht University as Assistant Professor in the group of Biobased Materials. In his research he focuses on the development of polycondensation materials for enhanced processing and performance. Through a systematic inclusion of renewable monomers in polymers, he aims to demonstrate the added value and functionality of new biobased building blocks. ISBN: 978-90-825680-2-

    High Performance Liquid Crystalline Polymers from 2,5- furandicarboxylic acid;: Synthesis, Characterization and Properties

    No full text
    Thermotropic polyesters are an important class of materials for high performance applications.Their low melt viscosities, low thermal expansion coefficients, high use temperatures, and ease in processing allow for the production of high strength and high modulus fibers, films, or compressionmolded articles. In this work we explore the synthesis, melt extrusion, fiber spinning, and performance of thermotropic liquid-crystalline polyesters from renewable resources. Special focus is on the application of the bio-based co-monomers 2,5-furandicarboxylic acid and vanillic acid and on their effect of the material properties. Using a high-temperature acidolysis melt-polycondensation reaction at temperatures up to 360 °C, fully aromatic bio-based thermotropic polyesters with melting temperature around 300 °C have successfully synthesized. [1] Unfortunately, processing at these high temperatures causes degradation of the monomers during the polymerization, resulting in discoloured and low molecular weight material (Mn of 8,000 g/mol). Instead, synthesis at mild temperatures ( up to 0.9), a tensile modulus of 10 GPa, and a tensile strength in the range of 150 – 200 MPa. [3] Although these values are promising, they are not comparable to performance of commercial liquid crystalline fibers. This is likely resulting from the large percentage of aliphatic content, which is generally 30 mole%. Despite the moderate performance of the pure thermotropic fibres, we demonstrate that the developed materials are efficient fillers in polyester blends: Detailed Tunnelling Electron Microscopy, differential scanning calirometry, small angle X-ray diffraction, and tensile testing studies indicate that these bio-based thermotropic liquid crystalline polyesters both reinforcing and provide surface for nucleation for the polyester matrix. [4] The resulting enhancement in interfacial interaction between the matrix and filler allows for the development of fibres from renewable polyester blends with enhanced tensile modulus and tensile strength, without mitigating on the strain at break (> 600 %). References [1] Wilsens, C.H.R.M.; Noordover, B.A.J.; Rastogi, S.; Polymer, 55, 2014, 2432 [2] Wilsens, C.H.R.M.; Verhoeven, J.M.G.A.; Noordover, B.A.J.; Hansen, M.R.; Auhl, D.; Rastogi, S.; Macromolecules, 47, 2014, 3306. [3] Wilsens, C.H.R.M.; Deshmukh, Y.S.; Liu, W.; Noordover, B.A.J.; Yao, Y.; Meijer, H.E.H.; Rastogi, S.; Polymer, 60, 2015, 198. [4] Wilsens, C.H.R.M.; Pepels, M.P.F.; Spoelstra, A.B.; Portale, G.; Auhl, D.; Deshmukh, Y.S.; Harings, J.A.W.; Macromolecules, 49, 2016, 2228

    LIQUID CRYSTALLINE POLYMERS FROM VANILLIC ACID: SYNTHESIS, PROPERTIES, AND APPLICATIONS.

    No full text
    Thermotropic polyesters are an important class of materials for high erformance applications. Their low melt viscosities, low thermal expansion coefficients, high use temperatures, and ease in processing allow for the production of high strength and high modulus fibers, films, or compression-molded articles. In this work we explore the synthesis, melt extrusion, fiber spinning, and performance of thermotropic liquid-crystalline polyesters from renewable resources (BioLCP). Special focus is on the application of the bio-based monomers vanillic acid and 2,5-furandicarboxylic acid and their added value and functionality on BioLCPproperties. Through the apploication ofa melt-polycondensation reaction at mild temperatures ( 600 %). References.1. Wilsens, C.H.R.M.; Noordover, B.A.J.; Rastogi, S.; Polymer, 2014, 55,24322. Wilsens, C.H.R.M.; Verhoeven, J.M.G.A.; Noordover, B.A.J.; Hansen, M.R.; Auhl, D.; Rastogi, S.; Macromolecules, 2014, 47, 3306.3. Wilsens, C.H.R.M.; Deshmukh, Y.S.; Liu, W.; Noordover, B.A.J.; Yao, Y.; Meijer, H.E.H.; Rastogi, S.; Polymer, 2015, 60, 198.4. Wilsens, C.H.R.M.; Pepels, M.P.F.; Spoelstra, A.B.; Portale, G.; Auhl, D.; Deshmukh, Y.S.; Harings, J.A.W.; Macromolecules, 2016, 49, 2228
    • …
    corecore