63 research outputs found

    A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c

    Get PDF
    Three Earth-sized exoplanets were recently discovered close to the habitable zone of the nearby ultracool dwarf star TRAPPIST-1. The nature of these planets has yet to be determined, since their masses remain unmeasured and no observational constraint is available for the planetary population surrounding ultracool dwarfs, of which the TRAPPIST-1 planets are the first transiting example. Theoretical predictions span the entire atmospheric range from depleted to extended hydrogen-dominated atmospheres. Here, we report a space-based measurement of the combined transmission spectrum of the two inner planets made possible by a favorable alignment resulting in their simultaneous transits on 04 May 2016. The lack of features in the combined spectrum rules out cloud-free hydrogen-dominated atmospheres for each planet at 10-σ\sigma levels; TRAPPIST-1 b and c are hence unlikely to harbor an extended gas envelope as they lie in a region of parameter space where high-altitude cloud/haze formation is not expected to be significant for hydrogen-dominated atmospheres. Many denser atmospheres remain consistent with the featureless transmission spectrum---from a cloud-free water vapour atmosphere to a Venus-like atmosphere.Comment: Early release to inform further the upcoming review of HST's Cycle 24 proposal

    Martian dust storm impact on atmospheric H<sub>2</sub>O and D/H observed by ExoMars Trace Gas Orbiter

    Get PDF
    Global dust storms on Mars are rare but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere, primarily owing to solar heating of the dust. In turn, changes in atmospheric dynamics can affect the distribution of atmospheric water vapour, with potential implications for the atmospheric photochemistry and climate on Mars. Recent observations of the water vapour abundance in the Martian atmosphere during dust storm conditions revealed a high-altitude increase in atmospheric water vapour that was more pronounced at high northern latitudes, as well as a decrease in the water column at low latitudes. Here we present concurrent, high-resolution measurements of dust, water and semiheavy water (HDO) at the onset of a global dust storm, obtained by the NOMAD and ACS instruments onboard the ExoMars Trace Gas Orbiter. We report the vertical distribution of the HDO/H O ratio (D/H) from the planetary boundary layer up to an altitude of 80 kilometres. Our findings suggest that before the onset of the dust storm, HDO abundances were reduced to levels below detectability at altitudes above 40 kilometres. This decrease in HDO coincided with the presence of water-ice clouds. During the storm, an increase in the abundance of H2O and HDO was observed at altitudes between 40 and 80 kilometres. We propose that these increased abundances may be the result of warmer temperatures during the dust storm causing stronger atmospheric circulation and preventing ice cloud formation, which may confine water vapour to lower altitudes through gravitational fall and subsequent sublimation of ice crystals. The observed changes in H2O and HDO abundance occurred within a few days during the development of the dust storm, suggesting a fast impact of dust storms on the Martian atmosphere

    No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations

    Get PDF
    The detection of methane on Mars has been interpreted as indicating that geochemical or biotic activities could persist on Mars today. A number of different measurements of methane show evidence of transient, locally elevated methane concentrations and seasonal variations in background methane concentrations. These measurements, however, are difficult to reconcile with our current understanding of the chemistry and physics of the Martian atmosphere, which-given methane's lifetime of several centuries-predicts an even, well mixed distribution of methane. Here we report highly sensitive measurements of the atmosphere of Mars in an attempt to detect methane, using the ACS and NOMAD instruments onboard the ESA-Roscosmos ExoMars Trace Gas Orbiter from April to August 2018. We did not detect any methane over a range of latitudes in both hemispheres, obtaining an upper limit for methane of about 0.05 parts per billion by volume, which is 10 to 100 times lower than previously reported positive detections. We suggest that reconciliation between the present findings and the background methane concentrations found in the Gale crater would require an unknown process that can rapidly remove or sequester methane from the lower atmosphere before it spreads globally

    Optical and radiometric models of the NOMAD instrument part II: The infrared channels - SO and LNO

    Get PDF

    NAD(P)H-dependent enzymes from extremophilic microorganisms

    No full text
    Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    The role of the codon first letter in the relationship between genomic GC content and protein amino acid composition

    No full text
    Analysis of the statistical distribution of amino acid compositions within 22 protein families shows that a GC bias generally affects proteins with a variety of functions from the extreme thermophile Thermus. This results in evident enrichment in amino acids of the group L, V, A, P, R and G and underrepresentation of amino acids of the group I, M, E S, T, C and W. The strong amino acid composition biases noted in Thermus proteins are not related to thermoadaptation; they were also found in mesophilic homologues encoded by GC-rich genes. The results of a comparative analysis on large samples of translated sequences from 30 organisms, representing the three major kingdoms of life and including extremophiles, indicate a universal correlation between the usage of particular amino acids and the genomic GC content. It is concluded that the codon first letter plays a dominant role in translating the genomic GC signature into protein amino acid composition and sequences.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    The dihydrofolate reductase-encoding gene dyrA of the hyperthermophilic bacterium thermotoga maritima

    No full text
    The structural gene (dyrA) encoding dihydrofolate reductase (DHFR) of Thermotoga maritima has been cloned, sequenced and expressed in Escherichia coli. The dyrA gene, located immediately upstream from the gene encoding aspartate carbamoyltransferase (pyrB), encodes a highly thermostable enzyme with a distinct thermophilic activity profile. Important structural features are conserved among all bacterial DHFR, yet the DHFR of T. maritima appears unique in a number of insertions and deletions, some of which are reminiscent of eukaryotic DHFR. © 1995.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Dihydropteridine Reductase as an Alternative to Dihydrofolate Reductase for Synthesis of Tetrahydrofolate in Thermus thermophilus

    No full text
    A strategy devised to isolate a gene coding for a dihydrofolate reductase from Thermus thermophilus DNA delivered only clones harboring instead a gene (the T. thermophilus dehydrogenase [DH(Tt)] gene) coding for a dihydropteridine reductase which displays considerable dihydrofolate reductase activity (about 20% of the activity detected with 6,7-dimethyl-7,8-dihydropterine in the quinonoid form as a substrate). DH(Tt) appears to account for the synthesis of tetrahydrofolate in this bacterium, since a classical dihydrofolate reductase gene could not be found in the recently determined genome nucleotide sequence (A. Henne, personal communication). The derived amino acid sequence displays most of the highly conserved cofactor and active-site residues present in enzymes of the short-chain dehydrogenase/reductase family. The enzyme has no pteridine-independent oxidoreductase activity, in contrast to Escherichia coli dihydropteridine reductase, and thus appears more similar to mammalian dihydropteridine reductases, which do not contain a flavin prosthetic group. We suggest that bifunctional dihydropteridine reductases may be responsible for the synthesis of tetrahydrofolate in other bacteria, as well as archaea, that have been reported to lack a classical dihydrofolate reductase but for which possible substitutes have not yet been identified
    corecore