639 research outputs found

    Unintentional Homicide in the Commission of an Unlawful Act

    Get PDF

    Unintentional Homicide in the Commission of an Unlawful Act

    Get PDF

    A Resolved Molecular Gas Disk around the Nearby A Star 49 Ceti

    Full text link
    The A star 49 Ceti, at a distance of 61 pc, is unusual in retaining a substantial quantity of molecular gas while exhibiting dust properties similar to those of a debris disk. We present resolved observations of the disk around 49 Ceti from the Submillimeter Array in the J=2-1 rotational transition of CO with a resolution of 1.0x1.2 arcsec. The observed emission reveals an extended rotating structure viewed approximately edge-on and clear of detectable CO emission out to a distance of ~90 AU from the star. No 1.3 millimeter continuum emission is detected at a 3-sigma sensitivity of 2.1 mJy/beam. Models of disk structure and chemistry indicate that the inner disk is devoid of molecular gas, while the outer gas disk between 40 and 200 AU from the star is dominated by photochemistry from stellar and interstellar radiation. We determine parameters for a model that reproduces the basic features of the spatially resolved CO J=2-1 emission, the spectral energy distribution, and the unresolved CO J=3-2 spectrum. We investigate variations in disk chemistry and observable properties for a range of structural parameters. 49 Ceti appears to be a rare example of a system in a late stage of transition between a gas-rich protoplanetary disk and a tenuous, virtually gas-free debris disk.Comment: 11 pages, 6 figures, accepted for publication in Ap

    DCO+^+, DCN and N2_2D+^+ reveal three different deuteration regimes in the disk around the Herbig Ae star HD163296

    Get PDF
    The formation pathways of deuterated species trace different regions of protoplanetary disks and may shed light into their physical structure. We aim to constrain the radial extent of main deuterated species; we are particularly interested in spatially characterizing the high and low temperature pathways for enhancing deuteration of these species. We observed the disk surrounding the Herbig Ae star HD 163296 using ALMA in Band 6 and obtained resolved spectral imaging data of DCO+^+ (JJ=3-2), DCN (JJ=3-2) and N2_2D+^+ (JJ=3-2). We model the radial emission profiles of DCO+^+, DCN and N2_2D+^+, assuming their emission is optically thin, using a parametric model of their abundances and radial excitation temperature estimates. DCO+^+ can be described by a three-region model, with constant-abundance rings centered at 70 AU, 150 AU and 260 AU. The DCN radial profile peaks at about ~60 AU and N2_2D+^+ is seen in a ring at ~160 AU. Simple models of both molecules using constant abundances reproduce the data. Assuming reasonable average excitation temperatures for the whole disk, their disk-averaged column densities (and deuterium fractionation ratios) are 1.6-2.6×1012\times 10^{12} cm2^{-2} (0.04-0.07), 2.9-5.2×1012\times 10^{12} cm2^{-2} (\sim0.02) and 1.6-2.5 ×1011\times 10^{11} cm2^{-2} (0.34-0.45) for DCO+^+, DCN and N2_2D+^+, respectively. Our simple best-fit models show a correlation between the radial location of the first two rings in DCO+^+ and the DCN and N2_2D+^+ abundance distributions that can be interpreted as the high and low temperature deuteration pathways regimes. The origin of the third DCO+^+ ring at 260 AU is unknown but may be due to a local decrease of ultraviolet opacity allowing the photodesorption of CO or due to thermal desorption of CO as a consequence of radial drift and settlement of dust grains

    Increased H2_2CO production in the outer disk around HD 163296

    Get PDF
    Three formaldehyde lines were observed (H2_2CO 303_{03}--202_{02}, H2_2CO 322_{22}--221_{21}, and H2_2CO 321_{21}--220_{20}) in the protoplanetary disk around the Herbig Ae star HD 163296 with ALMA at 0.5 arcsecond (60 AU) spatial resolution. H2_2CO 303_{03}--202_{02} was readily detected via imaging, while the weaker H2_2CO 322_{22}--221_{21} and H2_2CO 321_{21}--220_{20} lines required matched filter analysis to detect. H2_2CO is present throughout most of the gaseous disk, extending out to 550 AU. An apparent 50 AU inner radius of the H2_2CO emission is likely caused by an optically thick dust continuum. The H2_2CO radial intensity profile shows a peak at 100 AU and a secondary bump at around 300 AU, suggesting increased production in the outer disk. Different parameterizations of the H2_2CO abundance were compared to the observed visibilities with χ2\chi^2 minimization, using either a characteristic temperature, a characteristic radius or a radial power law index to describe the H2_2CO chemistry. Similar models were applied to ALMA Science Verification data of C18^{18}O. In all modeling scenarios, fits to the H2_2CO data show an increased abundance in the outer disk. The overall best-fit H2_2CO model shows a factor of two enhancement beyond a radius of 270±\pm20 AU, with an inner abundance of 2 ⁣ ⁣5×10122\!-\!5 \times 10^{-12}. The H2_2CO emitting region has a lower limit on the kinetic temperature of T>20T > 20 K. The C18^{18}O modeling suggests an order of magnitude depletion in the outer disk and an abundance of 4 ⁣ ⁣12×1084\!-\!12 \times 10^{-8} in the inner disk. The increase in H2_2CO outer disk emission could be a result of hydrogenation of CO ices on dust grains that are then sublimated via thermal desorption or UV photodesorption, or more efficient gas-phase production beyond about 300 AU if CO is photodisocciated in this region

    ALMA Observations of the Young Substellar Binary System 2M1207

    Get PDF
    We present ALMA observations of the 2M1207 system, a young binary made of a brown dwarf with a planetary-mass companion at a projected separation of about 40 au. We detect emission from dust continuum at 0.89 mm and from the J=32J = 3 - 2 rotational transition of CO from a very compact disk around the young brown dwarf. The small radius found for this brown dwarf disk may be due to truncation from the tidal interaction with the planetary-mass companion. Under the assumption of optically thin dust emission, we estimated a dust mass of 0.1 MM_{\oplus} for the 2M1207A disk, and a 3σ\sigma upper limit of 1 MMoon\sim 1~M_{\rm{Moon}} for dust surrounding 2M1207b, which is the tightest upper limit obtained so far for the mass of dust particles surrounding a young planetary-mass companion. We discuss the impact of this and other non-detections of young planetary-mass companions for models of planet formation, which predict the presence of circum-planetary material surrounding these objects.Comment: 10 pages, 6 figures, accepted for publication in A

    An ALMA survey of DCN/H13^{13}CN and DCO+^+/H13^{13}CO+^+ in protoplanetary disks

    Get PDF
    The deuterium enrichment of molecules is sensitive to their formation environment. Constraining patterns of deuterium chemistry in protoplanetary disks is therefore useful for probing how material is inherited or reprocessed throughout the stages of star and planet formation. We present ALMA observations at 0.6"\sim0.6" resolution of DCO+^+, H13^{13}CO+^+, DCN, and H13^{13}CN in the full disks around T Tauri stars AS 209 and IM Lup, the transition disks around T Tauri stars V4046 Sgr and LkCa 15, and the full disks around Herbig Ae stars MWC 480 and HD 163296. We also present ALMA observations of HCN in the IM Lup disk. DCN, DCO+^+, and H13^{13}CO+^+ are detected in all disks, and H13^{13}CN in all but the IM Lup disk. We find efficient deuterium fractionation for the sample, with estimates of disk-averaged DCO+^+/HCO+^+ and DCN/HCN abundance ratios ranging from 0.020.06\sim0.02-0.06 and 0.0050.08\sim0.005-0.08, respectively, which is comparable to values reported for other ISM environments. The relative distributions of DCN and DCO+^+ vary between disks, suggesting that multiple formation pathways may be needed to explain the diverse emission morphologies. In addition, gaps and rings observed in both H13^{13}CO+^+ and DCO+^+ emission provide new evidence that DCO+^+ bears a complex relationship with the location of the midplane CO snowline.Comment: 36 pages, 14 figures, updated to match figure order of published version in Ap
    corecore