115 research outputs found
Market Research: Tenancy Fitout Material Procurement Attitudes and Practices
The Better Buildings partnership (BBP) has previously investigated the tenancy processes that generate waste successive cycles of fitout, de-fit, make good and re-fit. This research project has been commissioned to explore why waste occurs in commercial building fitouts and what can be done about it, with a particular focus on the materials that dominate the fitout waste stream. The characteristics of each material and aspects of its usage are explored to determine how to improve reuse and recycling rates. The Institute for Sustainable Futures (ISF) conducted in-depth interviews with 15 industry participants for this study, ranging from architects and property managers through to contractors and manufacturers. We also reviewed literature to provide context, however we found the available literature somewhat limited in terms of its currency, depth and local relevance. It is the interview conversations that provide a rich picture of the myriad issues and day-to-day problems that make it hard to institute a less wasteful, circular economy. The study attempts to place the problems in the context of the whole system to highlight possible solutions
Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 å resolution
AbstractBackground: Copper amine oxidases are a ubiquitous and novel group of quinoenzymes that catalyze the oxidative deamination of primary amines to the corresponding aldehydes, with concomitant reduction of molecular oxygen to hydrogen peroxide. The enzymes are dimers of identical 70–90 kDa subunits, each of which contains a single copper ion and a covalently bound cofactor formed by the post-translational modification of a tyrosine side chain to 2,4,5-trihydroxyphenylalanine quinone (TPQ).Results The crystal structure of amine oxidase from Escherichia coli has been determined in both an active and an inactive form. The only structural differences are in the active site, where differences in copper coordination geometry and in the position and interactions of the redox cofactor, TPQ, are observed. Each subunit of the mushroom-shaped dimer comprises four domains: a 440 amino acid C-terminal β sandwich domain, which contains the active site and provides the dimer interface, and three smaller peripheral α/β domains (D1–D3), each of about 100 amino acids. D2 and D3 show remarkable structural and sequence similarity to each other and are conserved throughout the quinoenzyme family. In contrast, D1 is absent from some amine oxidases. The active sites are well buried from solvent and lie some 35 å apart, connected by a pair of β hairpin arms.Conclusion The crystal structure of E. coli copper amine oxidase reveals a number of unexpected features and provides a basis for investigating the intriguing similarities and differences in catalytic mechanism of members of this enzyme family. In addition to the three conserved histidines that bind the copper, our studies identify a number of other conserved residues close to the active site, including a candidate for the catalytic base and a fourth conserved histidine which is involved in an interesting intersubunit interaction
Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: a novel compositional data analysis approach
<div><p>The associations between time spent in sleep, sedentary behaviors (SB) and physical activity with health are usually studied without taking into account that time is finite during the day, so time spent in each of these behaviors are codependent. Therefore, little is known about the combined effect of time spent in sleep, SB and physical activity, that together constitute a composite whole, on obesity and cardio-metabolic health markers. Cross-sectional analysis of NHANES 2005–6 cycle on N = 1937 adults, was undertaken using a compositional analysis paradigm, which accounts for this intrinsic codependence. Time spent in SB, light intensity (LIPA) and moderate to vigorous activity (MVPA) was determined from accelerometry and combined with self-reported sleep time to obtain the 24 hour time budget composition. The distribution of time spent in sleep, SB, LIPA and MVPA is significantly associated with BMI, waist circumference, triglycerides, plasma glucose, plasma insulin (all p<0.001), and systolic (p<0.001) and diastolic blood pressure (p<0.003), but not HDL or LDL. Within the composition, the strongest positive effect is found for the proportion of time spent in MVPA. Strikingly, the effects of MVPA replacing another behavior and of MVPA being displaced by another behavior are asymmetric. For example, re-allocating 10 minutes of SB to MVPA was associated with a lower waist circumference by 0.001% but if 10 minutes of MVPA is displaced by SB this was associated with a 0.84% higher waist circumference. The proportion of time spent in LIPA and SB were detrimentally associated with obesity and cardiovascular disease markers, but the association with SB was stronger. For diabetes risk markers, replacing SB with LIPA was associated with more favorable outcomes. Time spent in MVPA is an important target for intervention and preventing transfer of time from LIPA to SB might lessen the negative effects of physical inactivity.</p></div
On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves
Mutualistic associations between bacteria and eukaryotes occur ubiquitously in nature, forming the basis for key ecological and evolutionary innovations. Some of the most prominent examples of these symbioses are chemosynthetic bacteria and marine invertebrates living in the absence of sunlight at deep-sea hydrothermal vents and in sediments rich in reduced sulfur compounds. Here, chemosynthetic bacteria living in close association with their hosts convert CO2 or CH4 into organic compounds and provide the host with necessary nutrients. The dominant macrofauna of hydrothermal vent and cold seep ecosystems all depend on the metabolic activity of chemosynthetic bacteria, which accounts for almost all primary production in these complex ecosystems. Many of these enigmatic mutualistic associations are found within the molluscan class Bivalvia. Currently, chemosynthetic symbioses have been reported from five distinct bivalve families (Lucinidae, Mytilidae, Solemyidae, Thyasiridae, and Vesicomyidae). This brief review aims to provide an overview of the diverse physiological and genetic adaptations of symbiotic chemosynthetic bacteria and their bivalve hosts
Research Exploring Physical Activity in Care Homes (REACH): study protocol for a randomised controlled trial
Background: As life expectancy increases and the number of older people, particularly those aged 85 years and over, expands there is an increase in demand for long-term care. A large proportion of people in a care home setting spend most of their time sedentary, and this is one of the leading preventable causes of death. Encouraging residents to engage in more physical activity could deliver benefits in terms of physical and psychological health, and quality of life. This study is the final stage of a programme of research to develop and preliminarily test an evidence-based intervention designed to enhance opportunities for movement amongst care home residents, thereby increasing levels of physical activity. Methods/design: This is a cluster randomised feasibility trial, aiming to recruit at least 8–12 residents at each of 12 residential care homes across Yorkshire, UK. Care homes will be randomly allocated on a 1:1 basis to receive either the intervention alongside usual care, or to continue to provide usual care alone. Assessment will be undertaken with participating residents at baseline (prior to care home randomisation) and at 3, 6, and 9 months post-randomisation. Data relating to changes in physical activity, physical function, level of cognitive impairment, mood, perceived health and wellbeing, and quality of life will be collected. Data at the level of the home will also be collected and will include staff experience of care, and changes in the numbers and types of adverse events residents experience (for example, hospital admissions, falls). Details of National Health Service (NHS) usage will be collected to inform the economic analysis. An embedded process evaluation will obtain information to test out the theory of change underpinning the intervention and its acceptability to staff and residents. Discussion: This feasibility trial with embedded process evaluation and collection of health economic data will allow us to undertake detailed feasibility work to inform a future large-scale trial. It will provide valuable information to inform research procedures in this important but challenging area
Comparative Genomic Analyses of Copper Transporters and Cuproproteomes Reveal Evolutionary Dynamics of Copper Utilization and Its Link to Oxygen
Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth
Development of a Tetrameric Streptavidin Mutein with Reversible Biotin Binding Capability: Engineering a Mobile Loop as an Exit Door for Biotin
A novel form of tetrameric streptavidin has been engineered to have reversible biotin binding capability. In wild-type streptavidin, loop3–4 functions as a lid for the entry and exit of biotin. When biotin is bound, interactions between biotin and key residues in loop3–4 keep this lid in the closed state. In the engineered mutein, a second biotin exit door is created by changing the amino acid sequence of loop7–8. This door is mobile even in the presence of the bound biotin and can facilitate the release of biotin from the mutein. Since loop7–8 is involved in subunit interactions, alteration of this loop in the engineered mutein results in an 11° rotation between the two dimers in reference to wild-type streptavidin. The tetrameric state of the engineered mutein is stabilized by a H127C mutation, which leads to the formation of inter-subunit disulfide bonds. The biotin binding kinetic parameters (koff of 4.28×10−4 s−1 and Kd of 1.9×10−8 M) make this engineered mutein a superb affinity agent for the purification of biotinylated biomolecules. Affinity matrices can be regenerated using gentle procedures, and regenerated matrices can be reused at least ten times without any observable reduction in binding capacity. With the combination of both the engineered mutein and wild-type streptavidin, biotinylated biomolecules can easily be affinity purified to high purity and immobilized to desirable platforms without any leakage concerns. Other potential biotechnological applications, such as development of an automated high-throughput protein purification system, are feasible
Ancestral State Reconstruction Reveals Rampant Homoplasy of Diagnostic Morphological Characters in Urticaceae, Conflicting with Current Classification Schemes
Urticaceae is a family with more than 2000 species, which contains remarkable morphological diversity. It has undergone many taxonomic reorganizations, and is currently the subject of further systematic studies. To gain more resolution in systematic studies and to better understand the general patterns of character evolution in Urticaceae, based on our previous phylogeny including 169 accessions comprising 122 species across 47 Urticaceae genera, we examined 19 diagnostic characters, and analysed these employing both maximum-parsimony and maximum-likelihood approaches. Our results revealed that 16 characters exhibited multiple state changes within the family, with ten exhibiting >eight changes and three exhibiting between 28 and 40. Morphological synapomorphies were identified for many clades, but the diagnostic value of these was often limited due to reversals within the clade and/or homoplasies elsewhere. Recognition of the four clades comprising the family at subfamily level can be supported by a small number carefully chosen defining traits for each. Several non-monophyletic genera appear to be defined only by characters that are plesiomorphic within their clades, and more detailed work would be valuable to find defining traits for monophyletic clades within these. Some character evolution may be attributed to adaptive evolution in Urticaceae due to shifts in habitat or vegetation type. This study demonstrated the value of using phylogeny to trace character evolution, and determine the relative importance of morphological traits for classification
Nitrate respiration in the hydrothermal vent tubeworm Riftia pachyptila
THE vestimentiferan tubeworm Riftia pachyptila is found around hydrothermal vent areas in the deep sea. Intracellular bacterial chemoautotrophic symbionts use the oxidation of sulphide from the effluent of the vents as an energy source for CO2 fixation. They apparently provide most or all of the nutritional requirements for their gutless hosts1–5. This kind of symbiosis has since been found in many other species from various other phyla from other habitats6–9. Here we present results that the bacteria of R. pachyptila may cover a significant fraction of their respiratory needs by the use of nitrate in addition to oxygen. Nitrate is reduced to nitrite, which may be the end product (nitrate respiration)10 or it may be further reduced to nitrogen gas (denitrification)11. This metabolic trait may have an important role in the colonization of hypoxic habitats in general by animals with this kind of symbiosis
Stand Out in Class: restructuring theclassroom environment to reducesedentary behaviour in 9–10-year-olds—study protocol for a pilot clusterrandomised controlled trial
Background: Sedentary behaviour (sitting) is a highly prevalent negative health behaviour, with individuals of allages exposed to environments that promote prolonged sitting. Excessive sedentary behaviour adversely affects health inchildren and adults. As sedentary behaviour tracks from childhood into adulthood, the reduction of sedentary time inyoung people is key for the prevention of chronic diseases that result from excessive sitting in later life. The sedentaryschool classroom represents an ideal setting for environmentalchange, through the provision of sit-stand desks. Whilstthe use of sit-stand desks in classrooms demonstrates positiveeffects in some key outcomes, evidence is currently limitedby small samples and/or short intervention durations, withfewstudiesadoptingrandomisedcontrolledtrial(RCT)designs. This paper describes the protocol of a pilot cluster RCT of a sit-stand desk interventioninprimaryschoolclassrooms.Methods/Design:A two-arm pilot cluster RCT will be conducted in eight primary schools (four intervention, four control)with at least 120 year 5 children (aged 9–10 years). Sit-stand desks will replace six standard desks in the interventionclassrooms. Teachers will be encouraged to ensure all pupils are exposed to the sit-stand desks for at least 1 h/dayon average using a rotation system. Schools assigned to the control arm will continue with their usual practice, noenvironmental changes will be made to their classrooms. Measurements will be taken at baseline, beforerandomisation, and at the end of the schools’academic year. In this study, the primary outcomes of interest will beschool and participant recruitment and attrition, acceptability of the intervention, and acceptability and complianceto the proposed outcome measures (including activPAL-measured school-time and school-day sitting, accelerometer-measured physical activity, adiposity, blood pressure, cognitive function, academic progress, engagement, andbehaviour) for inclusion in a definitive trial. A full process evaluation and an exploratory economic evaluation willalso be conducted to further inform a definitive tria
- …