573 research outputs found

    Sonic Booms in Atmospheric Turbulence (SonicBAT): The Influence of Turbulence on Shaped Sonic Booms

    Get PDF
    The objectives of the Sonic Booms in Atmospheric Turbulence (SonicBAT) Program were to develop and validate, via research flight experiments under a range of realistic atmospheric conditions, one numeric turbulence model research code and one classic turbulence model research code using traditional N-wave booms in the presence of atmospheric turbulence, and to apply these models to assess the effects of turbulence on the levels of shaped sonic booms predicted from low boom aircraft designs. The SonicBAT program has successfully investigated sonic boom turbulence effects through the execution of flight experiments at two NASA centers, Armstrong Flight Research Center (AFRC) and Kennedy Space Center (KSC), collecting a comprehensive set of acoustic and atmospheric turbulence data that were used to validate the numeric and classic turbulence models developed. The validated codes were incorporated into the PCBoom sonic boom prediction software and used to estimate the effect of turbulence on the levels of shaped sonic booms associated with several low boom aircraft designs. The SonicBAT program was a four year effort that consisted of turbulence model development and refinement throughout the entire period as well as extensive flight test planning that culminated with the two research flight tests being conducted in the second and third years of the program. The SonicBAT team, led by Wyle, includes partners from the Pennsylvania State University, Lockheed Martin, Gulfstream Aerospace, Boeing, Eagle Aeronautics, Technical & Business Systems, and the Laboratory of Fluid Mechanics and Acoustics (France). A number of collaborators, including the Japan Aerospace Exploration Agency, also participated by supporting the experiments with human and equipment resources at their own expense. Three NASA centers, AFRC, Langley Research Center (LaRC), and KSC were essential to the planning and conduct of the experiments. The experiments involved precision flight of either an F-18A or F-18B executing steady, level passes at supersonic airspeeds in a turbulent atmosphere to create sonic boom signatures that had been distorted by turbulence. The flights spanned a range of atmospheric turbulence conditions at NASA Armstrong and Kennedy in order to provide a variety of conditions for code validations. The SonicBAT experiments at both sites were designed to capture simultaneous F-18A or F-18B onboard flight instrumentation data, high fidelity ground based and airborne acoustic data, surface and upper air meteorological data, and additional meteorological data from ultrasonic anemometers and SODARs to determine the local atmospheric turbulence and boundary layer height

    Observation of reduced thermal conductivity in a metal-organic framework due to the presence of adsorbates

    Get PDF
    Whether the presence of adsorbates increases or decreases thermal conductivity in metal-organic frameworks (MOFs) has been an open question. Here we report observations of thermal transport in the metal-organic framework HKUST-1 in the presence of various liquid adsorbates: water, methanol, and ethanol. Experimental thermoreflectance measurements were performed on single crystals and thin films, and theoretical predictions were made using molecular dynamics simulations. We find that the thermal conductivity of HKUST-1 decreases by 40 – 80% depending on the adsorbate, a result that cannot be explained by effective medium approximations. Our findings demonstrate that adsorbates introduce additional phonon scattering in HKUST-1, which particularly shortens the lifetimes of low-frequency phonon modes. As a result, the system thermal conductivity is lowered to a greater extent than the increase expected by the creation of additional heat transfer channels. Finally, we show that thermal diffusivity is even more greatly reduced than thermal conductivity by adsorption

    Steady and Time-Resolved Photoelectron Spectra Based on Nuclear Ensembles

    Get PDF
    Semiclassical methods to simulate both steady and time-resolved photoelectron spectra are presented. These approaches provide spectra with absolute band shapes and vibrational broadening beyond the Condon approximation, using an ensemble of nuclear configurations built either via distribution samplings or nonadiabatic dynamics simulations. Two models to account for the electron kinetic energy modulation due to vibrational overlaps between initial and final states are discussed. As illustrative examples, the steady photoelectron spectra of imidazole and adenine and the time- and kinetic-energy-resolved photoelectron spectrum of imidazole were simulated within the frame of time-dependent density functional theory. While for steady spectra only electrons ejected with maximum allowed kinetic energy need to be considered, it is shown that to properly describe time-resolved spectra, electrons ejected with low kinetic energies must be considered in the simulations as well. The results also show that simulations based either on full computation of photoelectron cross section or on simple Dyson orbital norms provide results of similar quality

    Hybridization from Guest-Host Interactions Reduces the Thermal Conductivity of Metal-Organic Frameworks

    Get PDF
    We experimentally and theoretically investigate the thermal conductivity and mechanical properties of polycrystalline HKUST-1 metal–organic frameworks (MOFs) infiltrated with three guest molecules: tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4_{4}-TCNQ), and (cyclohexane-1,4-diylidene)dimalononitrile (H4_{4}-TCNQ). This allows for modification of the interaction strength between the guest and host, presenting an opportunity to study the fundamental atomic scale mechanisms of how guest molecules impact the thermal conductivity of large unit cell porous crystals. The thermal conductivities of the guest@MOF systems decrease significantly, by on average a factor of 4, for all infiltrated samples as compared to the uninfiltrated, pristine HKUST-1. This reduction in thermal conductivity goes in tandem with an increase in density of 38% and corresponding increase in heat capacity of ∼48%, defying conventional effective medium scaling of thermal properties of porous materials. We explore the origin of this reduction by experimentally investigating the guest molecules’ effects on the mechanical properties of the MOF and performing atomistic simulations to elucidate the roles of the mass and bonding environments on thermal conductivity. The reduction in thermal conductivity can be ascribed to an increase in vibrational scattering introduced by extrinsic guest-MOF collisions as well as guest molecule-induced modifications to the intrinsic vibrational structure of the MOF in the form of hybridization of low frequency modes that is concomitant with an enhanced population of localized modes. The concentration of localized modes and resulting reduction in thermal conductivity do not seem to be significantly affected by the mass or bonding strength of the guest species

    Quasi-classical trajectories study of Ne2Br2(B) vibrational predissociation: Kinetics and product distributions

    Full text link
    The vibrational predissociation of the Ne2Br2(B) van der Waals complex has been investigated using the quasi-classical trajectory method (QCT), in the range of vibrational levels v' = 16-23. Extensive comparison is made with the most recent experimental observations [Pio et al., J. Chem. Phys. 133, 014305 (2010)], molecular dynamics with quantum transitions (MDQT) simulations [Miguel et al., Faraday Discuss. 118, 257 (2001)], and preliminary results from 24-dimensional Cartesian coupled coherent state (CCCS) calculations. A sequential mechanism is found to accurately describe the theoretical dynamical evolution of intermediate and final product populations, and both QCT and CCCS provide very good estimates for the dissociation lifetimes. The capabilities of QCT in the description of the fragmentation kinetics is analyzed in detail by using reduced-dimensionality models of the complexes and concepts from phase-space transport theory. The problem of fast decoupling of the different coherent states in CCCS simulations, resulting from the high dimensionality of phase space, is tackled using a re-expansion scheme. QCT ro-vibrational product state distributions are reported. Due to the weakness of the vdW couplings and the low density of vibrational states, QCT predicts a larger than observed propensity for \Delta v' = -1 and -2 channels for the respective dissociation of the first and second Ne atoms.Comment: 16 pages, 6 figures, 4 tables. Accepted for publication in J. Chem. Phy
    • …
    corecore