80 research outputs found

    Molecular accretion in the core of the galaxy cluster 2A 0335+096

    Get PDF
    We present adaptive optics-assisted K-band integral field spectroscopy of the central cluster galaxy in 2A 0335+096 (z= 0.0349). The H2 v=1–0 S(1) emission is concentrated in two peaks within 600 pc of the nucleus and fainter but kinematically active emission extends towards the nucleus. The H2 is in a rotating structure which aligns with, and appears to have been accreted from, a stream of Hα emission extending over 14 kpc towards a companion galaxy. The projected rotation axis aligns with the 5 GHz radio lobes. This H2 traces the known 1.2 × 109 M⊙ CO-emitting reservoir; limits on the Brγ emission confirm that the H2 emission is not excited by star formation, which occurs at a rate of less than 1 M⊙ yr−1 in this gas. If its accretion on to the black hole can be regulated whilst star formation remains suppressed, the reservoir could last for at least 1 Gyr; the simultaneous accretion of just ∼5 per cent of the gas could drive a series of active galactic nucleus (AGN) outbursts which offset X-ray cooling in the cluster core for the full ∼1 Gyr. Alternatively, if the regulation is ineffective and the bulk of the H2 accretes within a few orbital periods (25–100 Myr), the resulting 1062 erg outburst would be among the most powerful cluster AGN outbursts known. In either case, these observations further support cold feedback scenarios for AGN heating

    Gemini Observations of Disks and Jets in Young Stellar Objects and in Active Galaxies

    Full text link
    We present first results from the Near-infrared Integral Field Spectrograph (NIFS) located at Gemini North. For the active galaxies Cygnus A and Perseus A we observe rotationally-supported accretion disks and adduce the existence of massive central black holes and estimate their masses. In Cygnus A we also see remarkable high-excitation ionization cones dominated by photoionization from the central engine. In the T-Tauri stars HV Tau C and DG Tau we see highly-collimated bipolar outflows in the [Fe II] 1.644 micron line, surrounded by a slower molecular bipolar outflow seen in the H_2 lines, in accordance with the model advocated by Pyo et al. (2002).Comment: Invited paper presented at the 5th Stromlo Symposium. 9 pages, 7 figures. Accepted for publication in Astrophysics & Space Scienc

    A comprehensive study of the radio properties of brightest cluster galaxies

    Get PDF
    We examine the radio properties of the brightest cluster galaxies (BCGs) in a large sample of X-ray selected galaxy clusters comprising the Brightest Cluster Sample (BCS), the extended BCS and ROSAT-ESO Flux Limited X-ray cluster catalogues. We have multifrequency radio observations of the BCG using a variety of data from the Australia Telescope Compact Array, Jansky Very Large Array and Very Long Baseline Array telescopes. The radio spectral energy distributions of these objects are decomposed into a component attributed to on-going accretion by the active galactic nuclei (AGN) that we refer to as ‘the core’, and a more diffuse, ageing component we refer to as the ‘non-core’. These BCGs are matched to previous studies to determine whether they exhibit emission lines (principally Hα), indicative of the presence of a strong cooling cluster core. We consider how the radio properties of the BCGs vary with cluster environmental factors. Line emitting BCGs are shown to generally host more powerful radio sources, exhibiting the presence of a strong, distinguishable core component in about 60 per cent of cases. This core component more strongly correlates with the BCG's [O III] 5007 Å line emission. For BCGs in line emitting clusters, the X-ray cavity power correlates with both the extended and core radio emission, suggestive of steady fuelling of the AGN over bubble-rise time-scales in these clusters

    The black-hole masses of Seyfert galaxies and quasars

    Get PDF
    The central black-hole masses of a sample of 30 luminous quasars are estimated using H-beta FWHM measurements from a combination of new and previously-published nuclear spectra. The quasar black-hole mass estimates are combined with reverberation-mapping measurements for a sample of Seyfert galaxies (Wandel 1999) in order to study AGN black-hole masses over a wide range in nuclear luminosity. It is found that black-hole mass and bulge luminosity are well correlated and follow a relation consistent with that expected if black-hole and bulge mass are directly proportional. Contrary to the results of Wandel (1999) no evidence is found that Seyfert galaxies follow a different Mblack-Mbulge relation to quasars. However, the black-hole mass distributions of the radio-loud and radio-quiet quasar sub-samples are found to be significantly different, with the median black-hole mass of the radio-loud quasars a factor of three larger than their radio-quiet counterparts. Finally, utilizing the elliptical galaxy fundamental plane to provide stellar velocity dispersion estimates, a comparison is performed between the virial H-beta black-hole mass estimates and those of the Mblack-sigma correlations of Gebhardt et al. (2000a) and Merritt & Ferrarese (2000). With the disc-like geometry of the broad-line region adopted in this paper, the virial H-beta black-hole masses indicate that the correct normalization of the black-hole vs. bulge mass relation is Mblack=0.0025Mbulge, while the standard assumption of purely random broad-line velocities leads to Mblack=0.0008Mbulge. The normalization of Mblack=0.0025Mbulge provided by the disc model is in remarkably good agreement with that inferred for our quasar sample using the (completely independent) Mblack-sigma correlations.Comment: 10 pages, 6 figures, accepted for publication in MNRA

    Optical emission line nebulae in galaxy cluster cores 1: the morphological, kinematic and spectral properties of the sample

    Get PDF
    We present an Integral Field Unit survey of 73 galaxy clusters and groups with the VIsible Multi Object Spectrograph on the Very Large Telescope. We exploit the data to determine the H α gas dynamics on kpc scales to study the feedback processes occurring within the dense cluster cores. We determine the kinematic state of the ionized gas and show that the majority of systems (∼2/3) have relatively ordered velocity fields on kpc scales that are similar to the kinematics of rotating discs and are decoupled from the stellar kinematics of the brightest cluster galaxy. The majority of the H α flux (>50 per cent) is typically associated with these ordered kinematics and most systems show relatively simple morphologies suggesting they have not been disturbed by a recent merger or interaction. Approximately 20 per cent of the sample (13/73) have disturbed morphologies which can typically be attributed to active galactic nuclei activity disrupting the gas. Only one system shows any evidence of an interaction with another cluster member. A spectral analysis of the gas suggests that the ionization of the gas within cluster cores is dominated by non-stellar processes, possibly originating from the intracluster medium itself

    The obscured growth of massive black holes

    Get PDF
    The mass density of massive black holes observed locally is consistent with the hard X-ray Background provided that most of the radiation produced during their growth was absorbed by surrounding gas. A simple model is proposed here for the formation of galaxy bulges and central black holes in which young spheroidal galaxies have a significant distributed component of cold dusty clouds which accounts for the absorption. The central accreting black hole is assumed to emit both a quasar-like spectrum, which is absorbed by the surrounding gas, and a slow wind. The power in both is less than the Eddington limit for the black hole. The wind however exerts the most force on the gas and, as earlier suggested by Silk & Rees, when the black hole reaches a critical mass, it is powerful enough to eject the cold gas from the galaxy, so terminating the growth of both black hole and galaxy. In the present model this point occurs when the Thomson depth in the surrounding gas has dropped to about unity and results in the mass of the black hole being proportional to the mass of the spheroid, with the normalization agreeing with that found for local galaxies by Magorrian et al. for reasonable wind parameters. The model predicts a new population of hard X-ray and sub-mm sources at redshifts above one which are powered by black holes in their main growth phase.Comment: 5 pages, no figures, MN LATEX style, accepted for publication in the MNRA

    Cold Gas in Cluster Cores

    Full text link
    I review the literature's census of the cold gas in clusters of galaxies. Cold gas here is defined as the gas that is cooler than X-ray emitting temperatures (~10^7 K) and is not in stars. I present new Spitzer IRAC and MIPS observations of Abell 2597 (PI: Sparks) that reveal significant amounts of warm dust and star formation at the level of 5 solar masses per year. This rate is inconsistent with the mass cooling rate of 20 +/- 5 solar masses per year inferred from a FUSE [OVI] detection.Comment: 10 pages, conference proceeding

    Governing the anthropocene: agency, governance, knowledge

    Get PDF
    The growing body of literature on the idea of the Anthropocene has opened up serious questions that go to the heart of the social and human sciences. There has been as yet no satisfactory theoretical framework for the analysis of the Anthropocene debate in the social and human sciences. The notion of the Anthropocene is not only a condition in which humans have become geologic agents, thus signalling a temporal shift in Earth history: it can be seen as a new object of knowledge and an order of governance. A promising direction for theorizing in the social and human science is to approach the notion of the Anthropocene as exemplified in new knowledge practices that have implications for governance. It invokes new conceptions of time, agency, knowledge and governance. The Anthropocene has become a way in which the human world is re-imagined culturally and politically in terms of its relation with the Earth. It entails a cultural model, that is an interpretative category by which contemporary societies make sense of the world as embedded in the Earth, and articulate a new kind of historical self-understanding, by which an alternative order of governance is projected. This points in the direction of cosmopolitics – and thus of a ‘Cosmopolocene’ – rather than a geologization of the social or in the post-humanist philosophy, the end of the human condition as one marked by agency
    • …
    corecore