1,087 research outputs found

    Dynamics of Circumstellar Disks II: Heating and Cooling

    Full text link
    We present a series of 2-d (r,ϕr,\phi) hydrodynamic simulations of marginally self gravitating disks around protostars using an SPH code. We implement simple dynamical heating and we cool each location as a black body, using a photosphere temperature obtained from the local vertical structure. We synthesize SEDs from our simulations and compare them to fiducial SEDs derived from observed systems. These simulations produce less distinct spiral structure than isothermally evolved systems, especially in the inner third of the disk. Pattern are similar further from the star but do not collapse into condensed objects. The photosphere temperature is well fit to a power law in radius with index q∼1.1q\sim1.1, which is very steep. Far from the star, internal heating (PdVPdV work and shocks) are not responsible for generating a large fraction of the thermal energy contained in the disk matter. Gravitational torques responsible for such shocks cannot transport mass and angular momentum efficiently in the outer disk. Within ∼\sim5--10 AU of the star, rapid break up and reformation of spiral structure causes shocks, which provide sufficient dissipation to power a larger fraction of the near IR energy output. The spatial and size distribution of grains can have marked consequences on the observed near IR SED and can lead to increased emission and variability on ≲10\lesssim 10 year time scales. When grains are vaporized they do not reform into a size distribution similar to that from which most opacity calculations are based. With rapid grain reformation into the original size distribution, the disk does not emit near infrared photons. With a plausible modification to the opacity, it contributes much more.Comment: Accepted by ApJ, 60pg incl 24 figure

    Risk and uncertainty assessment of volcanic hazards

    Get PDF

    The Operator Product Expansion for Wilson Loops and Surfaces in the Large N Limit

    Get PDF
    The operator product expansion for ``small'' Wilson loops in {\cal N}=4, d=4 SYM is studied. The OPE coefficients are calculated in the large N and g_{YM}^2 N limit by exploiting the AdS/CFT correspondence. We also consider Wilson surfaces in the (0,2), d=6 superconformal theory. In this case, we find that the UV divergent terms include a term proportional to the rigid string action.Comment: 22 pages LaTeX2e, using utarticle.cls (included) and AMS-LaTeX macro

    Alternative Covid-19 mitigation measures in school classrooms:analysis using an agent-based model of SARS-CoV-2 transmission

    Get PDF
    The SARS-CoV-2 epidemic has impacted children's education, with schools required to implement infection control measures that have led to periods of absence and classroom closures. We developed an agent-based epidemiological model of SARS-CoV-2 transmission in a school classroom that allows us to quantify projected infection patterns within primary school classrooms, and related uncertainties. Our approach is based on a contact model constructed using random networks, informed by structured expert judgement. The effectiveness of mitigation strategies in suppressing infection outbreaks and limiting pupil absence are considered. COVID-19 infections in primary schools in England in autumn 2020 were re-examined and the model was then used to estimate infection levels in autumn 2021, as the Delta variant was emerging and it was thought likely that school transmission would play a major role in an incipient new wave of the epidemic. Our results were in good agreement with available data. These findings indicate that testing-based surveillance is more effective than bubble quarantine, both for reducing transmission and avoiding pupil absence, even accounting for insensitivity of self-administered tests. Bubble quarantine entails large numbers of absences, with only modest impact on classroom infections. However, maintaining reduced contact rates within the classroom can have a major benefit for managing COVID-19 in school settings

    Alternative Covid-19 mitigation measures in school classrooms:analysis using an agent-based model of SARS-CoV-2 transmission

    Get PDF
    The SARS-CoV-2 epidemic has impacted children's education, with schools required to implement infection control measures that have led to periods of absence and classroom closures. We developed an agent-based epidemiological model of SARS-CoV-2 transmission in a school classroom that allows us to quantify projected infection patterns within primary school classrooms, and related uncertainties. Our approach is based on a contact model constructed using random networks, informed by structured expert judgement. The effectiveness of mitigation strategies in suppressing infection outbreaks and limiting pupil absence are considered. COVID-19 infections in primary schools in England in autumn 2020 were re-examined and the model was then used to estimate infection levels in autumn 2021, as the Delta variant was emerging and it was thought likely that school transmission would play a major role in an incipient new wave of the epidemic. Our results were in good agreement with available data. These findings indicate that testing-based surveillance is more effective than bubble quarantine, both for reducing transmission and avoiding pupil absence, even accounting for insensitivity of self-administered tests. Bubble quarantine entails large numbers of absences, with only modest impact on classroom infections. However, maintaining reduced contact rates within the classroom can have a major benefit for managing COVID-19 in school settings

    What Can the Accretion Induced Collapse of White Dwarfs Really Explain?

    Get PDF
    The accretion induced collapse (AIC) of a white dwarf into a neutron star has been invoked to explain gamma-ray bursts, Type Ia supernovae, and a number of problematic neutron star populations and specific binary systems. The ejecta from this collapse has also been claimed as a source of r-process nucleosynthesis. So far, most AIC studies have focussed on determining the event rates from binary evolution models and less attention has been directed toward understanding the collapse itself. However, the collapse of a white dwarf into a neutron star is followed by the ejection of rare neutron-rich isotopes. The observed abundance of these chemical elements may set a more reliable limit on the rate at which AICs have taken place over the history of the galaxy. In this paper, we present a thorough study of the collapse of a massive white dwarf in 1- and 2-dimensions and determine the amount and composition of the ejected material. We discuss the importance of the input physics (equation of state, neutrino transport, rotation) in determining these quantities. These simulations affirm that AICs are too baryon rich to produce gamm-ray bursts and do not eject enough nickel to explain Type Ia supernovae (with the possible exception of a small subclass of extremely low-luminosity Type Ias). Although nucleosynthesis constraints limit the number of neutron stars formed via AICs to <0.1% of the total galactic neutron star population, AICs remain a viable scenario for forming systems of neutron stars which are difficult to explain with Type II core-collapse supernovae.Comment: Latex File, aaspp4 style, 18 pages total (5 figures), accepted by Ap

    Characterization of oligomers from methylglyoxal under dark conditions : a pathway to produce secondary organic aerosol through cloud processing during nighttime

    Get PDF
    Aqueous-phase oligomer formation from methylglyoxal, a major atmospheric photooxidation product, has been investigated in a simulated cloud matrix under dark conditions. The aim of this study was to explore an additional pathway producing secondary organic aerosol (SOA) through cloud processes without participation of photochemistry during nighttime. Indeed, atmospheric models still underestimate SOA formation, as field measurements have revealed more SOA than predicted. Soluble oligomers (n = 1-8) formed in the course of acid-catalyzed aldol condensation and acid-catalyzed hydration followed by acetal formation have been detected and characterized by positive and negative ion electrospray ionization mass spectrometry. Aldol condensation proved to be a favorable mechanism under simulated cloud conditions, while hydration/acetal formation was found to strongly depend on the pH of the system and only occurred at a pH < 3.5. No evidence was found for formation of organosulfates. The aldol oligomer series starts with a beta-hydroxy ketone via aldol condensation, where oligomers are formed by multiple additions of C3H4O2 units (72 Da) to the parent beta-hydroxy ketone. Ion trap mass spectrometry experiments were performed to structurally characterize the major oligomer species. A mechanistic pathway for the growth of oligomers under cloud conditions and in the absence of UV-light and OH radicals, which could substantially enhance in-cloud SOA yields, is proposed here for the first time

    Multicolor two-photon light-sheet microscopy

    No full text
    International audienceTwo-photon microscopy is the most effective approach for deep-tissue fluorescence cellular imaging; however, its application to high-throughput or high-content imaging is often hampered by low pixel rates, challenging multicolor excitation and potential cumulative photodamage. To overcome these limitations, we extended our prior work and combined two-photon scanned light-sheet..

    The Berwald-type linearisation of generalised connections

    Get PDF
    We study the existence of a natural `linearisation' process for generalised connections on an affine bundle. It is shown that this leads to an affine generalised connection over a prolonged bundle, which is the analogue of what is called a connection of Berwald type in the standard theory of connections. Various new insights are being obtained in the fine structure of affine bundles over an anchored vector bundle and affineness of generalised connections on such bundles.Comment: 25 page
    • …
    corecore