29 research outputs found

    GWAS Meta-Analysis of Suicide Attempt: Identification of 12 Genome-Wide Significant Loci and Implication of Genetic Risks for Specific Health Factors

    Get PDF

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Microduplications of 16p11.2 are associated with schizophrenia

    Get PDF
    Recurrent microdeletions and microduplications of a 600-kb genomic region of chromosome 16p11.2 have been implicated in childhood-onset developmental disorders1,2,3. We report the association of 16p11.2 microduplications with schizophrenia in two large cohorts. The microduplication was detected in 12/1,906 (0.63%) cases and 1/3,971 (0.03%) controls (P = 1.2 × 10−5, OR = 25.8) from the initial cohort, and in 9/2,645 (0.34%) cases and 1/2,420 (0.04%) controls (P = 0.022, OR = 8.3) of the replication cohort. The 16p11.2 microduplication was associated with a 14.5-fold increased risk of schizophrenia (95% CI (3.3, 62)) in the combined sample. A meta-analysis of datasets for multiple psychiatric disorders showed a significant association of the microduplication with schizophrenia (P = 4.8 × 10−7), bipolar disorder (P = 0.017) and autism (P = 1.9 × 10−7). In contrast, the reciprocal microdeletion was associated only with autism and developmental disorders (P = 2.3 × 10−13). Head circumference was larger in patients with the microdeletion than in patients with the microduplication (P = 0.0007)

    Chronic social stress induces DNA methylation changes at an evolutionary conserved intergenic region in chromosome X

    No full text
    <p>Chronic stress resulting from prolonged exposure to negative life events increases the risk of mood and anxiety disorders. Although chronic stress can change gene expression relevant for behavior, molecular regulators of this change have not been fully determined. One process that could play a role is DNA methylation, an epigenetic process whereby a methyl group is added onto nucleotides, predominantly cytosine in the CpG context, and which can be induced by chronic stress. It is unknown to what extent chronic social defeat, a model of human social stress, influences DNA methylation patterns across the genome. Our study addressed this question by using a targeted-capture approach called Methyl-Seq to investigate DNA methylation patterns of the dentate gyrus at putative regulatory regions across the mouse genome from mice exposed to 14 days of social defeat. Findings were replicated in independent cohorts by bisulfite-pyrosequencing. Two differentially methylated regions (DMRs) were identified. One DMR was located at intron 9 of <i>Drosha</i>, and it showed reduced methylation in stressed mice. This observation replicated in one of two independent cohorts. A second DMR was identified at an intergenic region of chromosome X, and methylation in this region was increased in stressed mice. This methylation difference replicated in two independent cohorts and in Major Depressive Disorder (MDD) postmortem brains. These results highlight a region not previously known to be differentially methylated by chronic social defeat stress and which may be involved in MDD.</p

    Replication Study Supports Evidence for Linkage to 9p24 in Obsessive-Compulsive Disorder

    Get PDF
    Obsessive-compulsive disorder (OCD) is a severe psychiatric illness that is characterized by intrusive and senseless thoughts and impulses (obsessions) and by repetitive behaviors (compulsions). Family, twin, and segregation studies support the presence of both genetic and environmental susceptibility factors, and the only published genome scan for OCD identified a candidate region on 9p24 at marker D9S288 that met criteria for suggestive significance (Hanna et al. 2002). In an attempt to replicate this finding, we genotyped 50 pedigrees with OCD, using microsatellite markers spanning the 9p24 candidate region, and analyzed the data, using parametric and nonparametric linkage analyses under both a narrow phenotype model (DSM-IV OCD definite; 41 affected sib pairs) and a broad phenotype model (DSM-IV OCD definite and probable; 50 affected sib pairs). Similar to what was described by Hanna et al. (2002), our strongest findings came with the dominant parameters and the narrow phenotype model: the parametric signal peaked at marker D9S1792 with an HLOD of 2.26 (α=0.59), and the nonparametric linkage signal (NPL) peaked at marker D9S1813 with an NPL of 2.52 (P=.006). These findings are striking in that D9S1813 and D9S1792 lie within 0.5 cM (<350 kb) of the original 9p24 linkage signal at D9S288; furthermore, pedigree-based association analyses also implicated the 9p24 candidate region by identifying two markers (D9S288 and GATA62F03) with modest evidence (P=.046 and .02, respectively) for association

    Targeted Sequencing of <i>FKBP5</i> in Suicide Attempters with Bipolar Disorder

    No full text
    <div><p>FKBP5 is a critical component of the Hypothalamic-Pituitary-Adrenal (HPA) axis, a system which regulates our response to stress. It forms part of a complex of chaperones, which inhibits binding of cortisol and glucocorticoid receptor translocation to the nucleus. Variations in both the HPA axis and <i>FKBP5</i> have been associated with suicidal behavior. We developed a systematic, targeted sequencing approach to investigate coding and regulatory regions in or near <i>FKBP5</i> in 476 bipolar disorder suicide attempters and 473 bipolar disorder non-attempters. Following stringent quality control checks, we performed single-variant, gene-level and haplotype tests on the resulting 481 variants. Secondary analyses investigated whether sex-specific variations in <i>FKBP5</i> increased the risk of attempted suicide. One variant, rs141713011, showed an excess of minor alleles in suicide attempters that was statistically significant following correction for multiple testing (Odds Ratio = 6.65, P-value = 7.5 x 10<sup>−4</sup>, Permuted P-value = 0.038). However, this result could not be replicated in an independent cohort (Odds Ratio = 0.90, P-value = 0.78). Three female-specific and four male-specific variants of nominal significance were also identified (P-value < 0.05). The gene-level and haplotype association tests did not produce any significant results. This comprehensive study of common and rare variants in <i>FKBP5</i> focused on both regulatory and coding regions in relation to attempted suicide. One rare variant remained significant following correction for multiple testing but could not be replicated. Further investigation is required in larger sample sets to fully elucidate the association of this variant with suicidal behavior.</p></div
    corecore