40 research outputs found

    The Importance Of Primary Inoculum And Area-wide Disease Management To Crop Health And Food Security

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)In some epidemics that have devastating consequences, the primary inoculum plays an important role in both epidemic onset and intensification. This article documents the dynamics of such epidemics, and illustrates their importance using two examples: Huanglongbing of citrus and begomoviruses of tomato. The latter disease is a major constraint to tomato production in Brazil, while the former has become a threat to global citrus production and farmers’ livelihoods. In spite of their importance little is known of the characteristics of these diseases and their management. This is because classical botanical epidemiology considers two types of diseases: polycyclic diseases, where the inoculum that causes infections is produced during the epidemic in or on individual plants that had been previously infected in the course of that epidemic; or monocyclic diseases, where inoculum that causes infection is not produced in or on individual plants that had been infected in the course of the epidemic, but in the soil, on secondary hosts, or in infected crop plants of the same host in other fields. Diseases of the first type typically present a logistic disease progress curve and management is based on reducing the rate of infection, whereas diseases of the second type present a monomolecular disease progress curve and management is based on reducing the initial inoculum. This article deals with plant diseases that depart in their structure and behaviour from these two archetypes, because they borrow elements from both. We address polycyclic diseases in which the primary inoculum has a continuous and dynamic role, and in which the secondary inoculum contributes to epidemic build-up, i.e., polycyclic diseases with continuous primary spread. This epidemiological structure generates less clear-cut disease progress curves, but usually follows a monomolecular dynamic. Our focus on this type of disease is multifold because (1) this more complex, combined, pattern is actually quite common, often leading to grave plant diseases epidemics, with impacts at the farm, community, and country scales, and (2) such epidemics are among the most difficult to manage. Our analysis leads us to assess past errors and current courses of action. It allows us to recognize, in addition to the conventional tools for management with local effects, the critical importance of collective action. Collective management action – at the farm, community, or national scales – is congruent with the characteristics of many epidemics, because they also entail properties at successive and nested scales. The management of such epidemics needs to address both the primary and secondary inoculum. More importantly, these actions have to be performed in an area-wide, regional basis in order to be effective. © 2016, Springer Science+Business Media Dordrecht and International Society for Plant Pathology.812212382012/51771-4, FAPESP, Conselho Nacional de Desenvolvimento Científico e Tecnológico402829/2012-3, CNPq, Conselho Nacional de Desenvolvimento Científico e TecnológicoFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    The importance of primary inoculum and area-wide disease management to crop thealth and fodd security.

    No full text
    Made available in DSpace on 2017-02-09T23:07:50Z (GMT). No. of bitstreams: 1 FoodSecv8p2212382016NAGATA.pdf: 3191370 bytes, checksum: e747a66cd2a4a6e58d8871c23f10e498 (MD5) Previous issue date: 2017-02-08201

    International agricultural research tackling the effects of global and climate changes on plant diseases in the developing world

    No full text
    Climate change has a number of observed, anticipated, or possible consequences on crop health worldwide. Global change, on the other hand, incorporates a number of drivers of change, including global population increase, natural resource evolution, and supply demand shifts in markets, from local to global. Global and climate changes interact in their effects on global ecosystems. Identifying and quantifying the impacts of global and climate changes on plant diseases is complex. A number of nonlinear relationships, such as the injury (epidemic) damage (crop loss) relationship, are superimposed on the interplay among the three summits of the disease triangle (host, pathogen, environment). Work on a range of pathosystems involving rice, peanut, wheat, and coffee has shown the direct linkage and feedback between production situations and crop health. Global and climate changes influence the effects of system components on crop health. The combined effects of global and climate changes on diseases vary from one pathosystem to another within the tetrahedron framework (humans, pathogens, crops, environment) where human beings, from individual farmers to consumers to entire societies, interact with hosts, pathogens, and the environment. This article highlights international phytopathological research addressing the effects of global and climate changes on plant diseases in a range of crops and pathosystems

    Complexity in climate-change impacts: an analytical framework for effects mediated by plant disease

    No full text
    The impacts of climate change on ecosystem services are complex in the sense that effective prediction requires consideration of a wide range of factors. Useful analysis of climate-change impacts on crops and native plant systems will often require consideration of the wide array of other biota that interact with plants, including plant diseases, animal herbivores, and weeds. We present a framework for analysis of complexity in climate-change effects mediated by plant disease. This framework can support evaluation of the level of model complexity likely to be required for analysing climate-change impacts mediated by disease. Our analysis incorporates consideration of the following set of questions for a particular host, pathogen, host–pathogen combination, or geographic region. 1. Are multiple biological interactions important? 2. Are there environmental thresholds for population responses? 3. Are there indirect effects of global change factors on disease development? 4. Are spatial components of epidemic processes affected by climate? 5. Are there feedback loops for management? 6. Are networks for intervention technologies slower than epidemic networks? 7. Are there effects of plant disease on multiple ecosystem services? 8. Are there feedback loops from plant disease to climate change? Evaluation of these questions will help in gauging system complexity, as illustrated for fusarium head blight and potato late blight. In practice, it may be necessary to expand models to include more components, identify those components that are the most important, and synthesize such models to include the optimal level of complexity for planning and research prioritization
    corecore