15,076 research outputs found
Coherent structures in localised and global pipe turbulence
The recent discovery of unstable travelling waves (TWs) in pipe flow has been
hailed as a significant breakthrough with the hope that they populate the
turbulent attractor. We confirm the existence of coherent states with internal
fast and slow streaks commensurate in both structure and energy with known TWs
using numerical simulations in a long pipe. These only occur, however, within
less energetic regions of (localized) `puff' turbulence at low Reynolds numbers
(Re=2000-2400), and not at all in (homogeneous) `slug' turbulence at Re=2800.
This strongly suggests that all currently known TWs sit in an intermediate
region of phase space between the laminar and turbulent states rather than
being embedded within the turbulent attractor itself. New coherent fast streak
states with strongly decelerated cores appear to populate the turbulent
attractor instead.Comment: As accepted for PRL. 4 pages, 6 figures. Alterations to figs. 4,5.
Significant changes to tex
Reply to Comment on 'Critical behaviour in the relaminarization of localized turbulence in pipe flow'
This is a Reply to Comment arXiv:0707.2642 by Hof et al. on Letter
arXiv:physics/0608292 which was subsequently published in Phys Rev Lett, 98,
014501 (2007).
In our letter it was reported that in pipe flow the median time for
relaminarisation of localised turbulent disturbances closely follows the
scaling . This conclusion was based on data from
collections of 40 to 60 independent simulations at each of six different
Reynolds numbers, Re. In the Comment, Hof et al. estimate differently
for the point at lowest Re. Although this point is the most uncertain, it forms
the basis for their assertion that the data might then fit an exponential
scaling , for some constant A, supporting Hof et al.
(2006) Nature, 443, 59. The most certain point (at largest Re) does not fit
their conclusion and is rejected. We clarify why their argument for rejecting
this point is flawed. The median is estimated from the distribution of
observations, and it is shown that the correct part of the distribution is
used. The data is sufficiently well determined to show that the exponential
scaling cannot be fit to the data over this range of Re, whereas the fit is excellent, indicating critical behaviour and supporting
experiments by Peixinho & Mullin 2006.Comment: 1 page, 1 figur
Encapsulation task of the low-cost silicon solar array project. Investigation of test methods, material properties, and processes for solar cell encapsulants
The results of an investigation of solar module encapsulation systems applicable to the Low-Cost Solar Array Project 1986 cost and performance goals are presented. Six basic construction elements were identified and their specific uses in module construction defined. A uniform coating basis was established for each element. The survey results were also useful in revealing price ranges for classes of materials and estimating the cost allocation for each element within the encapsulating cost goal. The six construction elements were considered to be substrates, superstrates, pottants, adhesives, outer covers and back covers
Constraints on Lorentz Invariance Violation using INTEGRAL/IBIS observations of GRB041219A
One of the experimental tests of Lorentz invariance violation is to measure
the helicity dependence of the propagation velocity of photons originating in
distant cosmological obejcts. Using a recent determination of the distance of
the Gamma-Ray Burst GRB 041219A, for which a high degree of polarization is
observed in the prompt emission, we are able to improve by 4 orders of
magnitude the existing constraint on Lorentz invariance violation, arising from
the phenomenon of vacuum birefringence.Comment: 5 pages, 3 figures, accepted for publication as a Rapid Communication
in Physical Review
Statistics of the largest geomagnetic storms per solar cycle (1844-1993)
International audienceA previous application of extreme-value statistics to the first, second and third largest geomagnetic storms per solar cycle for nine solar cycles is extended to fourteen solar cycles (1844?1993). The intensity of a geomagnetic storm is measured by the magnitude of the daily aa index, rather than the half-daily aa index used previously. Values of the conventional aa index (1868?1993), supplemented by the Helsinki Ak index (1844?1880), provide an almost continuous, and largely homogeneous, daily measure of geomagnetic activity over an interval of 150 years. As in the earlier investigation, analytic expressions giving the probabilities of the three greatest storms (extreme values) per solar cycle, as continuous functions of storm magnitude (aa), are obtained by least-squares fitting of the observations to the appropriate theoretical extreme-value probability functions. These expressions are used to obtain the statistical characteristics of the extreme values; namely, the mode, median, mean, standard deviation and relative dispersion. Since the Ak index may not provide an entirely homogeneous extension of the aa index, the statistical analysis is performed separately for twelve solar cycles (1868?1993), as well as nine solar cycles (1868?1967). The results are utilized to determine the expected ranges of the extreme values as a function of the number of solar cycles. For fourteen solar cycles, the expected ranges of the daily aa index for the first, second and third largest geomagnetic storms per solar cycle decrease monotonically in magnitude, contrary to the situation for the half-daily aa index over nine solar cycles. The observed range of the first extreme daily aa index for fourteen solar cycles is 159?352 nT and for twelve solar cycles is 215?352 nT. In a group of 100 solar cycles the expected ranges are expanded to 137?539 and 177?511 nT, which represent increases of 108% and 144% in the respective ranges. Thus there is at least a 99% probability that the daily aa index will satisfy the condition aa < 550 for the largest geomagnetic storm in the next 100 solar cycles. The statistical analysis is used to infer that remarkable conjugate auroral observations on the night of 16 September 1770, which were recorded during the first voyage of Captain Cook to Australia, occurred during an intense geomagnetic storm
Benchmarking calculations of excitonic couplings between bacteriochlorophylls
Excitonic couplings between (bacterio)chlorophyll molecules are necessary for
simulating energy transport in photosynthetic complexes. Many techniques for
calculating the couplings are in use, from the simple (but inaccurate)
point-dipole approximation to fully quantum-chemical methods. We compared
several approximations to determine their range of applicability, noting that
the propagation of experimental uncertainties poses a fundamental limit on the
achievable accuracy. In particular, the uncertainty in crystallographic
coordinates yields an uncertainty of about 20% in the calculated couplings.
Because quantum-chemical corrections are smaller than 20% in most biologically
relevant cases, their considerable computational cost is rarely justified. We
therefore recommend the electrostatic TrEsp method across the entire range of
molecular separations and orientations because its cost is minimal and it
generally agrees with quantum-chemical calculations to better than the
geometric uncertainty. We also caution against computationally optimizing a
crystal structure before calculating couplings, as it can lead to large,
uncontrollable errors. Understanding the unavoidable uncertainties can guard
against striving for unrealistic precision; at the same time, detailed
benchmarks can allow important qualitative questions--which do not depend on
the precise values of the simulation parameters--to be addressed with greater
confidence about the conclusions
- …