12,738 research outputs found
Developing inclusive residential care for older Lesbian, Gay, Bisexual and Trans (LGBT) people: an evaluation of the Care Home Challenge action research project
There have been substantial achievements in legislative and human rights for Lesbian, gay, bisexual and transgender (LGBT) older people and their visibility in health and social care has equally increased. These appear to have surpassed the ability of care services to meet their needs given documented concerns about the accessibility, inclusiveness and safety of care services particularly institutionalised care. This requires systemic change not easy to operationalise. This paper describes an action research initiative where six care homes belonging to a national care provider, collaborated to assess and develop their services with the support of local LGBT ‘Community Advisors’ and academic partners. Framed within Rogers’ (2003) change management framework and combined with a participatory leadership approach, a programme of intervention was implemented comprising structured activities around seven key areas thought to promote LGBT inclusion. A formal evaluation was conducted involving 35 pre and post intervention qualitative interviews with 18 people (community advisors; care home managers and senior managers). The findings are presented across three key themes 1) starting points on the journey; 2) challenges encountered along the journey (organisational and interpersonal); and, 3) making change happen; opportunities, initiatives and gains. We make recommendations on the value of a programme approach for achieving tangible outcomes that demonstrate increased inclusion for older LGBT older people living in long-term care settings
Lattice thermal expansion and anisotropic displacements in urea, bromomalonic aldehyde, pentachloropyridine and naphthalene
Anisotropic displacement parameters (ADPs) are commonly used in
crystallography, chemistry and related fields to describe and quantify thermal
motion of atoms. Within the very recent years, these ADPs have become
predictable by lattice dynamics in combination with first-principles theory.
Here, we study four very different molecular crystals, namely urea,
bromomalonic aldehyde, pentachloropyridine, and naphthalene, by
first-principles theory to assess the quality of ADPs calculated in the
quasi-harmonic approximation. In addition, we predict both thermal expansion
and thermal motion within the quasi-harmonic approximation and compare the
predictions with experimental data. Very reliable ADPs are calculated within
the quasi-harmonic approximation for all four cases up to at least 200 K, and
they turn out to be in better agreement with experiment than the harmonic ones.
In one particular case, ADPs can even reliably be predicted up to room
temperature. Our results also hint at the importance of normal-mode
anharmonicity in the calculation of ADPs
Glucose-6-phosphate dehydrogenase activity of Neurospora grown on media containing malonate and citrate
Glucose-6-phosphate dehydrogenase activity om malonate and citrat
Benchmarking calculations of excitonic couplings between bacteriochlorophylls
Excitonic couplings between (bacterio)chlorophyll molecules are necessary for
simulating energy transport in photosynthetic complexes. Many techniques for
calculating the couplings are in use, from the simple (but inaccurate)
point-dipole approximation to fully quantum-chemical methods. We compared
several approximations to determine their range of applicability, noting that
the propagation of experimental uncertainties poses a fundamental limit on the
achievable accuracy. In particular, the uncertainty in crystallographic
coordinates yields an uncertainty of about 20% in the calculated couplings.
Because quantum-chemical corrections are smaller than 20% in most biologically
relevant cases, their considerable computational cost is rarely justified. We
therefore recommend the electrostatic TrEsp method across the entire range of
molecular separations and orientations because its cost is minimal and it
generally agrees with quantum-chemical calculations to better than the
geometric uncertainty. We also caution against computationally optimizing a
crystal structure before calculating couplings, as it can lead to large,
uncontrollable errors. Understanding the unavoidable uncertainties can guard
against striving for unrealistic precision; at the same time, detailed
benchmarks can allow important qualitative questions--which do not depend on
the precise values of the simulation parameters--to be addressed with greater
confidence about the conclusions
Airborne measurements of cloud-forming nuclei and aerosol particles in stabilized ground clouds produced by solid rocket booster firings
Airborne measurements of cloud volumes, ice nuclei and cloud condensation nuclei, liquid particles, and aerosol particles were obtained from stabilized ground clouds (SGCs) produced by Titan 3 launches at Kennedy Space Center, 20 August and 5 September 1977. The SGCs were bright, white, cumulus clouds early in their life and contained up to 3.5 g/m3 of liquid in micron to millimeter size droplets. The measured cloud volumes were 40 to 60 cu km five hours after launch. The SGCs contained high concentrations of cloud condensation nuclei active at 0.2%, 0.5%, and 1.0% supersaturation for periods of three to five hours. The SGCs also contained high concentrations of submicron particles. Three modes existed in the particle population: a 0.05 to 0.1 micron mode composed of aluminum-containing particles, a 0.2 to 0.8 micron mode, and a 2.0 to 10 micron mode composed of particles that contained primarily aluminum
The imprints of primordial non-gaussianities on large-scale structure: scale dependent bias and abundance of virialized objects
We study the effect of primordial nongaussianity on large-scale structure,
focusing upon the most massive virialized objects. Using analytic arguments and
N-body simulations, we calculate the mass function and clustering of dark
matter halos across a range of redshifts and levels of nongaussianity. We
propose a simple fitting function for the mass function valid across the entire
range of our simulations. We find pronounced effects of nongaussianity on the
clustering of dark matter halos, leading to strongly scale-dependent bias. This
suggests that the large-scale clustering of rare objects may provide a
sensitive probe of primordial nongaussianity. We very roughly estimate that
upcoming surveys can constrain nongaussianity at the level |fNL| <~ 10,
competitive with forecasted constraints from the microwave background.Comment: 16 pages, color figures, revtex4. v2: added references and an
equation. submitted to PRD. v3: simplified derivation, additional reference
Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings
We report on successful tests of holographically arranged grating-structures
in nanoparticle-polymer composites in the form of 100 microns thin
free-standing films, i.e. without sample containers or covers that could cause
unwanted absorption/incoherent scattering of very-cold neutrons. Despite their
large diameter of 2 cm, the flexible materials are of high optical quality and
yield mirror-like reflectivity of about 90% for neutrons of 4.1 nm wavelength
- …