278 research outputs found

    Energy allocation in a reef coral under varying resource availability

    Get PDF
    An organism's pattern of resource allocation to reproduction and growth over time critically impacts on its lifetime reproductive success. During times of low resource availability, there are two fundamental, mutually exclusive strategies of energy investment: maintenance of somatic tissues to support survival and later reproduction or investment into an immediate reproductive event at the risk of subsequent death. Here, we examine energy allocation patterns in the coral Montipora digitata to determine whether energy investment during periods of resource shortage favours growth or reproduction in a sessile, modular marine species. We manipulated light regimes (two levels of shading) on plots within a shallow reef flat habitat (Orpheus Island, Great Barrier Reef, Australia) and quantified energy uptake (rates of net photosynthesis), energy investment into reproduction (E R ), tissue growth per unit surface area (E T ) and energy channelled into calcification (E C ). With declining resource availability (i.e. reduced photosynthesis), relative energy investment shifted from high (~80%) allocation to tissue growth (E R :E T :E C =11:81:8%) to an increasing proportion channelled into reproduction and skeletal growth (20:31:49%). At the lowest light regime, calcification was maintained but reproduction was halted and thus energy content per unit surface area of tissue declined, although no mortality was observed. The changing hierarchy in energy allocation among life functions with increasing resource limitation found here for an autotrophic coral, culminating in cessation of reproduction when limitations are severe, stands in contrast to observations from annual plants. However, the strategy may be optimal for maximising fitness components (growth, reproduction and survival) through time in marine modular animal

    Transgenerational inheritance of shuffled symbiont communities in the coral Montipora digitata

    Get PDF
    Adult organisms may "prime" their offspring for environmental change through a number of genetic and non-genetic mechanisms, termed parental effects. Some coral species may shuffle the proportions of Symbiodiniaceae within their endosymbiotic communities, subsequently altering their thermal tolerance, but it is unclear if shuffled communities are transferred to offspring. We evaluated Symbiodiniaceae community composition in tagged colonies of Montipora digitata over two successive annual spawning seasons and the 2016 bleaching event on the Great Barrier Reef. ITS2 amplicon sequencing was applied to four families (four maternal colonies and 10-12 eggs per family) previously sampled and sequenced the year before to characterize shuffling potential in these M. digitata colonies and determine if shuffled abundances were preserved in gametes. Symbiont densities and photochemical efficiencies differed significantly among adults in 2016, suggesting differential responses to increased temperatures. Low-abundance ("background") sequence variants differed more among years than between maternal colonies and offspring. Results indicate that shuffling can occur in a canonically 'stable' symbiosis, and that the shuffled community is heritable. Hence, acclimatory changes like shuffling of the Symbiodiniaceae community are not limited to the lifetime of an adult coral and that shuffled communities are inherited across generations in a species with vertical symbiont transmission. Although previously hypothesized, to our knowledge, this is the first evidence that shuffled Symbiodiniaceae communities (at both the inter- and intra- genera level) can be inherited by offspring and supports the hypothesis that shuffling in microbial communities may serve as a mechanism of rapid coral acclimation to changing environmental conditions

    Maternal effects and Symbiodinium community composition drive differential patterns in juvenile survival in the coral Acropora tenuis

    Get PDF
    Coral endosymbionts in the dinoflagellate genus Symbiodinium are known to impact host physiology and have led to the evolution of reef-building, but less is known about how symbiotic communities in early life-history stages and their interactions with host parental identity shape the structure of coral communities on reefs. Differentiating the roles of environmental and biological factors driving variation in population demographic processes, particularly larval settlement, early juvenile survival and the onset of symbiosis is key to understanding how coral communities are structured and to predicting how they are likely to respond to climate change. We show that maternal effects (that here include genetic and/or effects related to the maternal environment) can explain nearly 24% of variation in larval settlement success and 5–17% of variation in juvenile survival in an experimental study of the reef-building scleractinian coral, Acropora tenuis. After 25 days on the reef, Symbiodinium communities associated with juvenile corals differed significantly between high mortality and low mortality families based on estimates of taxonomic richness, composition and relative abundance of taxa. Our results highlight that maternal and familial effects significantly explain variation in juvenile survival and symbiont communities in a broadcast-spawning coral, with Symbiodinium type A3 possibly a critical symbiotic partner during this early life stage

    Heritability of the Symbiodinium community in vertically-and horizontally-transmitting broadcast spawning corals

    Get PDF
    The dinoflagellate-coral partnership influences the coral holobiont's tolerance to thermal stress and bleaching. However, the comparative roles of host genetic versus environmental factors in determining the composition of this symbiosis are largely unknown. Here we quantify the heritability of the initial Symbiodinium communities for two broadcast-spawning corals with different symbiont transmission modes: Acropora tenuis has environmental acquisition, whereas Montipora digitata has maternal transmission. Using high throughput sequencing of the ITS-2 region to characterize communities in parents, juveniles and eggs, we describe previously undocumented Symbiodinium diversity and dynamics in both corals. After one month of uptake in the field, Symbiodinium communities associated with A. tenuis juveniles were dominated by A3, C1, D1, A-type CCMP828, and D1a in proportional abundances conserved between experiments in two years. M. digitata eggs were predominantly characterized by C15, D1, and A3. In contrast to current paradigms, host genetic influences accounted for a surprising 29% of phenotypic variation in Symbiodinium communities in the horizontally-transmitting A. tenuis, but only 62% in the vertically-transmitting M. digitata. Our results reveal hitherto unknown flexibility in the acquisition of Symbiodinium communities and substantial heritability in both species, providing material for selection to produce partnerships that are locally adapted to changing environmental conditions

    Maternal effects and Symbiodinium community composition drive differential patterns in juvenile survival in the coral Acropora tenuis

    Get PDF
    Coral endosymbionts in the dinoflagellate genus Symbiodinium are known to impact host physiology and have led to the evolution of reef-building, but less is known about how symbiotic communities in early life-history stages and their interactions with host parental identity shape the structure of coral communities on reefs. Differentiating the roles of environmental and biological factors driving variation in population demographic processes, particularly larval settlement, early juvenile survival and the onset of symbiosis is key to understanding how coral communities are structured and to predicting how they are likely to respond to climate change. We show that maternal effects (that here include genetic and/or effects related to the maternal environment) can explain nearly 24% of variation in larval settlement success and 5–17% of variation in juvenile survival in an experimental study of the reef-building scleractinian coral, Acropora tenuis. After 25 days on the reef, Symbiodinium communities associated with juvenile corals differed significantly between high mortality and low mortality families based on estimates of taxonomic richness, composition and relative abundance of taxa. Our results highlight that maternal and familial effects significantly explain variation in juvenile survival and symbiont communities in a broadcast-spawning coral, with Symbiodinium type A3 possibly a critical symbiotic partner during this early life stage

    Comparative analysis of energy allocation to tissue and skeletal growth in corals

    Get PDF
    In aquatic invertebrates that form exoskeletons, the partitioning of energy between skeletal and tissue growth is an important tradeoff, especially under resource limitation or physiological stress. Here, we provide the first comparative analysis of energy investment into tissue and skeleton in corals. We develop a mathematical growth model based on colony geometry, tissue mass and quality (enthalpy), and predicted cost of calcification. For hemispherical colonies, the model predicts greater investment in tissue at small sizes, but a shift to skeletal-dominated growth at colony sizes greater than 5-14 cm radius, depending on tissue mass and quality. A similar transition occurs in branches, but is a function of radius and length. An experimental study to assess the impact of resource (light) limitation and physiological stress (sediment load) on energy partitioning in small hemispherical colonies (Goniastrea retiformis Lamarck) and branches (Porites cylindrica Dana) showed that tissue mass and quality varies greatly over small increments in colony or branch size. In particular, allocations to tissue growth varied tenfold (from positive to negative) more across sediment treatments than did allocations to skeletal growth. A model of energy acquisition versus loss (scope for growth) indicated that tissue growth is more responsive to resource variation and physiological stress than skeletal growth. These results suggest that (1) skeletal and tissue growth rates are weakly correlated across environmental conditions, and that (2) variation in tissue properties is a better proxy for coral health or stress than skeletal growth

    Implications of ocean acidification for marine microorganisms from the free-living to the host-associated

    Get PDF
    Anthropogenic CO2 emissions are causing oceans to become more acidic, with consequences for all marine life including microorganisms. Studies reveal that from the microbes that occupy the open ocean to those intimately associated with their invertebrate hosts changing ocean chemistry will alter the critical functions of these important organisms. Our current understanding indicates that bacterial communities associated with their host will shift as pH drops by another 0.2–0.4 units over the next 100 years. It is unclear what impacts this will have for host health, however, increased vulnerability to disease seems likely for those associated with reef corals. Natural CO2 seeps have provided a unique setting for the study of microbial communities under OA in situ, where shifts in the bacterial communities associated with corals at the seep are correlated with a decline in abundance of the associated coral species. Changes to global biogeochemical cycles also appear likely as photosynthesis and nitrogen fixation by pelagic microbes becomes enhanced under low pH conditions. However, recent long-term studies have shown that pelagic microbes are also capable of evolutionary adaptation, with some physiological responses to a decline in pH restored after hundreds of generations at high pCO2 levels. The impacts of ocean acidification (OA) also will not work in isolation, thus synergistic interactions with other potential stressors, such as rising seawater temperatures, will likely exacerbate the microbial response to OA. This review discusses our existing understanding of the impacts of OA on both pelagic and host-associated marine microbial communities, whilst highlighting the importance of controlled laboratory studies and in situ experiments, to fill the current gaps in our knowledge

    Unexpected mixed-mode transmission and moderate genetic regulation of Symbiodinium communities in a brooding coral

    Get PDF
    Determining the extent to which Symbiodinium communities in corals are inherited versus environmentally acquired is fundamental to understanding coral resilience and to predicting coral responses to stressors like warming oceans that disrupt this critical endosymbiosis. We examined the fidelity with which Symbiodinium communities in the brooding coral Seriatopora hystrix are vertically transmitted and the extent to which communities are genetically regulated, by genotyping the symbiont communities within 60 larvae and their parents (9 maternal and 45 paternal colonies) using high-throughput sequencing of the ITS2 locus. Unexpectedly, Symbiodinium communities associated with brooded larvae were distinct from those within parent colonies, including the presence of types not detected in adults. Bayesian heritability (h2) analysis revealed that 33% of variability in larval Symbiodinium communities was genetically controlled. Results highlight flexibility in the establishment of larval symbiont communities and demonstrate that symbiont transmission is not exclusively vertical in brooding corals. Instead, we show that Symbiodinium transmission in S. hystrix involves a mixed-mode strategy, similar to many terrestrial invertebrate symbioses. Also, variation in the abundances of common Symbiodinium types among adult corals suggests that microhabitat differences influence the structure of in hospite Symbiodinium communities. Partial genetic regulation coupled with flexibility in the environmentally acquired component of Symbiodinium communities implies that corals with vertical transmission, like S. hystrix, may be more resilient to environmental change than previously thought

    Corals Use Similar Immune Cells and Wound-Healing Processes as Those of Higher Organisms

    Get PDF
    Sessile animals, like corals, frequently suffer physical injury from a variety of sources, thus wound-healing mechanisms that restore tissue integrity and prevent infection are vitally important for defence. Despite the ecological importance of reef-building corals, little is known about the cells and processes involved in wound healing in this group or in phylogenetically basal metazoans in general

    Experimental evolution of the coral algal endosymbiont, Cladocopium goreaui: lessons learnt across a decade of stress experiments to enhance coral heat tolerance

    Get PDF
    Projected increases in sea surface temperatures will exceed corals' ability to withstand heat stress within this century. Experimental evolution of cultured symbionts (Symbiodiniaceae) at high temperatures followed by reintroduction into corals can enhance coral heat tolerance. Several studies have selected for enhanced tolerance in Cladocopium goreaui (C1) over multiple time scales and then compared the performance of coral juveniles infected with the heat-tolerant C1 selected strain (SS) to the performance of juveniles infected with the C1 wild type (WT). To derive lessons about host benefits when symbionts are experimentally selected, here we compare the performance of SS- and WT-juveniles after 21 cell generations of heat selection versus longer periods (73–131) in recently published experiments. After 21 generations, we found rapid improvement in heat tolerance of SS through an overall shift in the mean tolerance to temperature. This did not translate to improved growth and survivorship of the coral. Specifically, survival did not differ significantly between juveniles of Acropora tenuis hosting WT versus SS at any temperature. Juveniles infected with WT exhibited greater skeletal growth than those infected with SS at 27 and 31Β°C but not at 32.5Β°C. SS-juvenile symbiont cell densities increased significantly at 27Β°C relative to SS-juveniles in the 31 and 32.5Β°C. Photosynthetic efficiencies in SS-juveniles were higher compared to WT-juveniles at 31Β°C, equal at 27Β°C, and lower at 32.5Β°C. These results suggest that selection over longer generation (>130) times will be needed to confer host benefits and will be dependent on the stability of this association being maintained in nature
    • …
    corecore