59 research outputs found

    Molecular Evolution of Broadly Neutralizing Llama Antibodies to the CD4-Binding Site of HIV-1

    Get PDF
    To date, no immunization of humans or animals has elicited broadly neutralizing sera able to prevent HIV-1 transmission; however, elicitation of broad and potent heavy chain only antibodies (HCAb) has previously been reported in llamas. In this study, the anti-HIV immune responses in immunized llamas were studied via deep sequencing analysis using broadly neutralizing monoclonal HCAbs as a guides. Distinct neutralizing antibody lineages were identified in each animal, including two defined by novel antibodies (as variable regions called VHH) identified by robotic screening of over 6000 clones. The combined application of five VHH against viruses from clades A, B, C and CRF_AG resulted in neutralization as potent as any of the VHH individually and a predicted 100% coverage with a median IC50 of 0.17 µg/ml for the panel of 60 viruses tested. Molecular analysis of the VHH repertoires of two sets of immunized animals showed that each neutralizing lineage was only observed following immunization, demonstrating that they were elicited de novo. Our results show that immunization can induce potent and broadly neutralizing antibodies in llamas with features similar to human antibodies and provide a framework to analyze the effectiveness of immunization protocols

    Sightings edited by John W. Severinghaus

    No full text

    A comparison of static and dynamic cerebral autoregulation during mild whole-body cold stress in individuals with and without cervical spinal cord injury: a pilot study

    No full text
    This paper was published in the journal Spinal Cord and the definitive published version is available at https://doi.org/10.1038/s41393-017-0021-7.Study design: Experimental study. Objectives: To characterize static and dynamic cerebral autoregulation (CA) of individuals with cervical spinal cord injury (SCI) compared to able-bodied controls in response to moderate increases in mean arterial pressure (MAP) caused by mild whole-body cold stress. Setting: Japan Methods: Five men with complete autonomic cervical SCI (sustained>5y) and six age-matched able-bodied men participated in hemodynamic, temperature, catecholamine and respiratory measurements for 60 min during three consecutive stages: baseline (10 min; 330C water through a thin-tubed whole-body suit), mild cold stress (20 min; 250C water) and post-cold recovery (30 min; 330C water). Static CA was determined as the ratio between mean changes in middle cerebral artery blood velocity and MAP, dynamic CA as transfer function coherence, gain and phase between spontaneous changes in MAP to middle cerebral artery blood velocity. Results: MAP increased in both groups during cold and post-cold recovery (mean differences: 5 to 10 mm Hg; main effect of time: p=0.001). Static CA was not different between the able-bodied vs the cervical SCI group (mean [95% CI] of between-group difference: -4 [-11 to 3] and -2 [-5 to 1] cm/s/mmHg for cold (p=0.22) and post-cold (p=0.24), respectively). At baseline, transfer function phase was shorter in the cervical SCI group (mean [95% CI] of between-group difference: 0.6 [0.2 to 1.0] rad; p=0.006), while between-group differences in changes in phase were not different in response to the cold stress (interaction term: p=0.06). Conclusions: This pilot study suggests that static CA is similar between individuals with cervical SCI and able-bodied controls in response to moderate increases in MAP, while dynamic CA may be impaired in cervical SCI due to disturbed sympathetic control
    corecore