17,613 research outputs found

    Co-ordination and public administration in a global economy — A Hungarian point of view

    Get PDF
    The purpose of social co-ordination mechanisms is to co-ordinate the activities of individuals and organisations specialised in the distribution of work. The paper reviews five basic types of mechanisms: market, bureaucratic, ethical, aggressive and co-operative co-ordination. Today’s world operates on the basis of a duality: international cooperation is based on nation states, in which the public administrations work according to bureaucratic coordination. However, the increasingly globalised market responds to the logic of market coordination. The article argues that in terms of understanding the working of public administration, the various coordination mechanisms are of crucial importance, especially where various mechanisms meet, such as the relationship between nation states and multinational corporations

    Anxious to see you: Neuroendocrine mechanisms of social vigilance and anxiety during adolescence.

    Get PDF
    Social vigilance is a behavioral strategy commonly used in adverse or changing social environments. In animals, a combination of avoidance and vigilance allows an individual to evade potentially dangerous confrontations while monitoring the social environment to identify favorable changes. However, prolonged use of this behavioral strategy in humans is associated with increased risk of anxiety disorders, a major burden for human health. Elucidating the mechanisms of social vigilance in animals could provide important clues for new treatment strategies for social anxiety. Importantly, during adolescence the prevalence of social anxiety increases significantly. We hypothesize that many of the actions typically characterized as anxiety behaviors begin to emerge during this time as strategies for navigating more complex social structures. Here, we consider how the social environment and the pubertal transition shape neural circuits that modulate social vigilance, focusing on the bed nucleus of the stria terminalis and prefrontal cortex. The emergence of gonadal hormone secretion during adolescence has important effects on the function and structure of these circuits, and may play a role in the emergence of a notable sex difference in anxiety rates across adolescence. However, the significance of these changes in the context of anxiety is still uncertain, as not enough studies are sufficiently powered to evaluate sex as a biological variable. We conclude that greater integration between human and animal models will aid the development of more effective strategies for treating social anxiety

    Betatron radiation diagnostics for AWAKE Run 2

    Get PDF
    AWAKE Run 2 aims to preserve the transverse normalised emittance of an externally injected electron beam throughout acceleration, requiring a new diagnostic to measure the beam emittance after the accelerating plasma stage. Spectroscopy of the betatron emission from the electron beam could be suitable for this case. The method of trace-space reconstruction from a measured betatron spectrum is described via a simplified analytical model in order to assess its suitability the AWAKE experiment. The expected betatron emission from witness electrons at AWAKE is characterised using 3D quasi-static PIC simulations, revealing a measurable quantity of UV to soft x-ray emission. Practical challenges for the measurement are discussed

    Optical implementation and entanglement distribution in Gaussian valence bond states

    Full text link
    We study Gaussian valence bond states of continuous variable systems, obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites, applied at each of NN sites of an harmonic chain. The entanglement distribution in Gaussian valence bond states can be controlled by varying the input amount of entanglement engineered in a (2M+1)-mode Gaussian state known as the building block, which is isomorphic to the projector applied at a given site. We show how this mechanism can be interpreted in terms of multiple entanglement swapping from the chain of ancillary bonds, through the building blocks. We provide optical schemes to produce bisymmetric three-mode Gaussian building blocks (which correspond to a single bond, M=1), and study the entanglement structure in the output Gaussian valence bond states. The usefulness of such states for quantum communication protocols with continuous variables, like telecloning and teleportation networks, is finally discussed.Comment: 15 pages, 6 figures. To appear in Optics and Spectroscopy, special issue for ICQO'2006 (Minsk). This preprint contains extra material with respect to the journal versio

    Anomalous Radio-Wave Scattering from Interstellar Plasma Structures

    Full text link
    This paper considers scattering screens that have arbitrary spatial variations of scattering strength transverse to the line of sight, including screens that are spatially well confined, such as disks and filaments. We calculate the scattered image of a point source and the observed pulse shape of a scattered impulse. The consequences of screen confinement include: (1) Source image shapes that are determined by the physical extent of the screen rather than by the shapes of much-smaller diffracting microirregularities. These include image elongations and orientations that are frequency dependent. (2) Variation with frequency of angular broadening that is much weaker than the trademark \nu^{-2} scaling law (for a cold, unmagnetized plasma), including frequency-independent cases; and (3) Similar departure of the pulse broadening time from the usually expected \nu^{-4} scaling law. We briefly discuss applications that include scattering of pulses from the Crab pulsar by filaments in the Crab Nebula; image asymmetries from Galactic scattering of the sources Cyg X-3, Sgr A*, and NGC 6334B; and scattering of background active galactic nuclei by intervening galaxies. We also address the consequences for inferences about the shape of the wavenumber spectrum of electron density irregularities, which depend on scaling laws for the image size and the pulse broadening. Future low-frequency (< 100 MHz) array observations will also be strongly affected by the Galactic structure of scattering material. Our formalism is derived in the context of radio scattering by plasma density fluctuations. It is also applicable to optical, UV and X-ray scattering by grains in the interstellar medium.Comment: 21 pages, LaTeX2e with AASTeX-4.0, 6 PostScript figures, accepted by ApJ, revised version has minor changes to respond to referee comments and suggestion

    Density of Phonon States in Superconducting FeSe as a Function of Temperature and Pressure

    Full text link
    The temperature and pressure dependence of the partial density of phonon states of iron atoms in superconducting Fe1.01Se was studied by 57Fe nuclear inelastic scattering (NIS). The high energy resolution allows for a detailed observation of spectral properties. A sharpening of the optical phonon modes and shift of all spectral features towards higher energies by ~4% with decreasing temperature from 296 K to 10 K was found. However, no detectable change at the tetragonal - orthorhombic phase transition around 100 K was observed. Application of a pressure of 6.7 GPa, connected with an increase of the superconducting temperature from 8 K to 34 K, results in an increase of the optical phonon mode energies at 296 K by ~12%, and an even more pronounced increase for the lowest-lying transversal acoustic mode. Despite these strong pressure-induced modifications of the phonon-DOS we conclude that the pronounced increase of Tc in Fe1.01Se with pressure cannot be described in the framework of classical electron-phonon coupling. This result suggests the importance of spin fluctuations to the observed superconductivity

    Study of arc-jet propulsion devices Final report, 20 Nov. 1964 - 19 Dec. 1965

    Get PDF
    Energy transfer mechanisms in radiation, water, and regeneratively cooled, and MPD arc jet propulsion device

    Diffusion Quantum Monte Carlo Calculations of Excited States of Silicon

    Full text link
    The band structure of silicon is calculated at the Gamma, X, and L wave vectors using diffusion quantum Monte Carlo methods. Excited states are formed by promoting an electron from the valence band into the conduction band. We obtain good agreement with experiment for states around the gap region and demonstrate that the method works equally well for direct and indirect excitations, and that one can calculate many excited states at each wave vector. This work establishes the fixed-node DMC approach as an accurate method for calculating the energies of low lying excitations in solids.Comment: 5 pages, 1 figur

    'I would rather die': reasons given by 16-year-olds for not continuing their study of mathematics

    Get PDF
    Improving participation rates in specialist mathematics after the subject ceases to be compulsory at age 16 is part of government policy in England. This article provides independent and recent support for earlier findings concerning reasons for non- participation, based on free response and closed items in a questionnaire with a sample of over 1500 students in 17 schools, close to the moment of choice. The analysis supports findings that perceived difficulty and lack of confidence are important reasons for students not continuing with mathematics, and that perceived dislike and boredom, and lack of relevance, are also factors. There is a close relationship between reasons for non-participation and predicted grade, and a weaker relation to gender. An analysis of the effects of schools, demonstrates that enjoyment is the main factor differentiating schools with high and low participation indices. Building on discussion of these findings, ways of improving participation are briefly suggested
    corecore