8,699 research outputs found
Managing atrial fibrillation in the global community: The European perspective.
Atrial fibrillation is a common, global problem, with great personal, economic and social burdens. As populations age it increases in prevalence and becomes another condition that requires careful chronic management to ensure its effects are minimised. Assessment of the risk of stroke using well established risk prediction models is being aided by modern computerised databases and the choice
of drugs to prevent strokes is ever expanding to try and improve the major cause of morbidity in AF. In addition, newer drugs for controlling rhythm are available and guidelines are constantly changing to reflect this. As well as medications, modern techniques of electrophysiology are becoming more widely embraced worldwide to provide more targeted treatment for the underlying pathophysiology. In this review we consider these factors to concisely describe how AF can be successfully managed
Interfacial rheology and direct imaging reveal domain-templated network formation in phospholipid monolayers penetrated by fibrinogen
Phospholipids are found throughout the natural world, including the lung surfactant (LS) layer that reduces pulmonary surface tension and enables breathing. Fibrinogen, a protein involved in the blood clotting process, is implicated in LS inactivation and the progression of disorders such as acute respiratory distress syndrome. However, the interaction between fibrinogen and LS at the air-water interface is poorly understood. Through a combined microrheological, confocal and epifluorescence microscopy approach we quantify the interfacial shear response and directly image the morphological evolution when a model LS monolayer is penetrated by fibrinogen. When injected into the subphase beneath a monolayer of the phospholipid dipalmitoylphosphatidylcholine (DPPC, the majority component of LS), fibrinogen preferentially penetrates disordered liquid expanded (LE) regions and accumulates on the boundaries between LE DPPC and liquid condensed (LC) DPPC domains. Thus, fibrinogen is line active. Aggregates grow from the LC domain boundaries, ultimately forming a percolating network. This network stiffens the interface compared to pure DPPC and imparts the penetrated monolayer with a viscoelastic character reminiscent of a weak gel. When the DPPC monolayer is initially compressed beyond LE-LC coexistence, stiffening is significantly more modest and the penetrated monolayer retains a viscous-dominated, DPPC-like character
Gaian bottlenecks and planetary habitability maintained by evolving model biospheres: The ExoGaia model
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.The search for habitable exoplanets inspires the question - how do habitable planets form? Planet habitability models traditionally focus on abiotic processes and neglect a biotic response to changing conditions on an inhabited planet. The Gaia hypothesis postulates that life influences the Earth's feedback mechanisms to form a self-regulating system, and hence that life can maintain habitable conditions on its host planet. If life has a strong influence, it will have a role in determining a planet's habitability over time. We present the ExoGaia model - a model of simple 'planets' host to evolving microbial biospheres. Microbes interact with their host planet via consumption and excretion of atmospheric chemicals. Model planets orbit a 'star' which provides incoming radiation, and atmospheric chemicals have either an albedo, or a heat-trapping property. Planetary temperatures can therefore be altered by microbes via their metabolisms. We seed multiple model planets with life while their atmospheres are still forming and find that the microbial biospheres are, under suitable conditions, generally able to prevent the host planets from reaching inhospitable temperatures, as would happen on a lifeless planet. We find that the underlying geochemistry plays a strong role in determining long-term habitability prospects of a planet. We find five distinct classes of model planets, including clear examples of 'Gaian bottlenecks' - a phenomenon whereby life either rapidly goes extinct leaving an inhospitable planet, or survives indefinitely maintaining planetary habitability. These results suggest that life might play a crucial role in determining the long-term habitability of planets.We thank the Gaia Charity and the University of Exeter for their support of this work
Summing the strokes: energy economy in northern elephant seals during large-scale foraging migrations.
BackgroundThe energy requirements of free-ranging marine mammals are challenging to measure due to cryptic and far-ranging feeding habits, but are important to quantify given the potential impacts of high-level predators on ecosystems. Given their large body size and carnivorous lifestyle, we would predict that northern elephant seals (Mirounga angustirostris) have elevated field metabolic rates (FMRs) that require high prey intake rates, especially during pregnancy. Disturbance associated with climate change or human activity is predicted to further elevate energy requirements due to an increase in locomotor costs required to accommodate a reduction in prey or time available to forage. In this study, we determined the FMRs, total energy requirements, and energy budgets of adult, female northern elephant seals. We also examined the impact of increased locomotor costs on foraging success in this species.ResultsBody size, time spent at sea and reproductive status strongly influenced FMR. During the short foraging migration, FMR averaged 90.1 (SE = 1.7) kJ kg(-1)d(-1) - only 36 % greater than predicted basal metabolic rate. During the long migration, when seals were pregnant, FMRs averaged 69.4 (±3.0) kJ kg(-1)d(-1) - values approaching those predicted to be necessary to support basal metabolism in mammals of this size. Low FMRs in pregnant seals were driven by hypometabolism coupled with a positive feedback loop between improving body condition and reduced flipper stroking frequency. In contrast, three additional seals carrying large, non-streamlined instrumentation saw a four-fold increase in energy partitioned toward locomotion, resulting in elevated FMRs and only half the mass gain of normally-swimming study animals.ConclusionsThese results highlight the importance of keeping locomotion costs low for successful foraging in this species. In preparation for lactation and two fasting periods with high demands on energy reserves, migrating elephant seals utilize an economical foraging strategy whereby energy savings from reduced locomotion costs are shuttled towards somatic growth and fetal gestation. Remarkably, the energy requirements of this species, particularly during pregnancy, are 70-80 % lower than expected for mammalian carnivores, approaching or even falling below values predicted to be necessary to support basal metabolism in mammals of this size
Environmental selection and resource allocation determine spatial patterns in picophytoplankton cell size
Here we describe a new trait-based model for cellular resource allocation that we use to investigate the relative importance of different drivers for small cell size in phytoplankton. Using the model, we show that increased investment in nonscalable structural components with decreasing cell size leads to a trade-off between cell size, nutrient and light affinity, and growth rate. Within the most extreme nutrient-limited, stratified environments, resource competition theory then predicts a trend toward larger minimum cell size with increasing depth. We demonstrate that this explains observed trends using a marine ecosystem model that represents selection and adaptation of a diverse community defined by traits for cell size and subcellular resource allocation. This framework for linking cellular physiology to environmental selection can be used to investigate the adaptive response of the marine microbial community to environmental conditions and the adaptive value of variations in cellular physiology
Alternative mechanisms for Gaia
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordA long-standing objection to the Gaia hypothesis has been a perceived lack of plausible mechanisms by which life on Earth could come to regulate its abiotic environment. A null hypothesis is survival by pure chance, by which any appearance of regulation on Earth is illusory and the persistence of life simply reflects the weak anthropic principle - it must have occurred for intelligent observers to ask the question. Recent work has proposed that persistence alone increases the chance that a biosphere will acquire further persistence-enhancing properties. Here we use a simple quantitative model to show that such ‘selection by survival alone’ can indeed increase the probability that a biosphere will persist in the future, relative to a baseline of pure chance. Adding environmental feedback to this model shows either an increased or decreased survival probability depending on the initial conditions. Feedback can hinder early life becoming established if initial conditions are poor, but feedback can also prevent systems from diverging too far from optimum environmental conditions and thus increase survival rates. The outstanding question remains the relative importance of each mechanism for the historical and continued persistence of life on Earth.Gaia CharityUniversity of Exete
Multiple states of environmental regulation in well-mixed model biospheres.
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The Gaia hypothesis postulates that life influences Earth's feedback mechanisms to form a self regulating system. This provokes the question: how can global self-regulation evolve? Most models demonstrating environmental regulation involving life have relied on alignment between local selection and global regulation. In these models environment-improving individuals or communities spread to outcompete environment degrading individuals/communities, leading to global regulation, but this depends on local differences in environmental conditions. In contrast, well-mixed components of the Earth system, such as the atmosphere, lack local environmental differentiation. These previous models do not explain how global regulation can emerge in a system with no well defined local environment, or where the local environment is overwhelmed by global effects. We present a model of self-regulation by 'microbes' in an environment with no spatial structure. These microbes affect an abiotic 'temperature' as a byproduct of metabolism. We demonstrate that global self-regulation can arise in the absence of spatial structure in a diverse ecosystem without localised environmental effects. We find that systems can exhibit nutrient limitation and two temperature limitation regimes where the temperature is maintained at a near constant value. During temperature regulation, the total temperature change caused by the microbes is kept near constant by the total population expanding or contracting to absorb the impacts of new mutants on the average affect on the temperature per microbe. Dramatic shifts between low temperature regulation and high temperature regulation can occur when a mutant arises that causes the sign of the temperature effect to change. This result implies that self-regulating feedback loops can arise without the need for spatial structure, weakening criticisms of the Gaia hypothesis that state that with just one Earth, global regulation has no mechanism for developing because natural selection requires selection between multiple entities.We thank the Gaia Charity and the University of Exeter for their support of this work
Multiple states of environmental regulation in well-mixed modle biospheres.
The Gaia hypothesis postulates that life influences Earth’s feedback mechanisms to form a self-regulating system. This provokes the question: how can global self-regulation evolve? Most models demonstrating environmental regulation involving life have relied on alignment between local selection and global regulation. In these models environment-improving individuals or communities spread to outcompete environment degrading individuals / communities, leading to global regulation, but this depends on local differences in environmental conditions. In contrast, well-mixed components of the Earth system, such as the atmosphere, lack local environmental differentiation. These previous models do not explain how global regulation can emerge in a system with no well-defined local environment, or where the local environment is overwhelmed by global effects. We present a model of self-regulation by ‘microbes’ in an environment with no spatial structure. These microbes affect an abiotic ‘temperature’ as a byproduct of metabolism.
We demonstrate that global self-regulation can arise in the absence of spatial structure in a diverse ecosystem without localised environmental effects. We find that systems can exhibit nutrient limitation and two temperature limitation regimes where the temperature is maintained at a near constant value. During temperature regulation, the total temperature change caused by the microbes is kept near constant by the total population expanding or contracting to absorb the impacts of new mutants on the average affect on the temperature per microbe. Dramatic shifts between low temperature regulation and high temperature regulation can occur when a mutant arises that causes the sign of the temperature effect to change. This result implies that self-regulating feedback loops can arise without the need for spatial structure, weakening criticisms of the Gaia hypothesis that state that with just one Earth, global regulation has no mechanism for developing because natural selection requires selection between multiple entitie
The International Mass Loading Service
The International Mass Loading Service computes four loadings: a) atmospheric
pressure loading; b) land water storage loading; c) oceanic tidal loading; and
d) non-tidal oceanic loading. The service provides to users the mass loading
time series in three forms: 1) pre-computed time series for a list of 849 space
geodesy stations; 2) pre-computed time series on the global 1deg x 1deg grid;
and 3) on-demand Internet service for a list of stations and a time range
specified by the user. The loading displacements are provided for the time
period from 1979.01.01 through present, updated on an hourly basis, and have
latencies 8-20 hours.Comment: 8 pages, 3 figures, to appear in the Proceedings of the Reference
Frames for Applications in Geosciences Simposium, held in Luxemboug in
October 201
Distinct emphysema subtypes defined by quantitative CT analysis are associated with specific pulmonary matrix metalloproteinases.
BACKGROUND: Emphysema is characterised by distinct pathological sub-types, but little is known about the divergent underlying aetiology. Matrix-metalloproteinases (MMPs) are proteolytic enzymes that can degrade the extracellular matrix and have been identified as potentially important in the development of emphysema. However, the relationship between MMPs and emphysema sub-type is unknown. We investigated the role of MMPs and their inhibitors in the development of emphysema sub-types by quantifying levels and determining relationships with these sub-types in mild-moderate COPD patients and ex/current smokers with preserved lung function. METHODS: Twenty-four mild-moderate COPD and 8 ex/current smokers with preserved lung function underwent high resolution CT and distinct emphysema sub-types were quantified using novel local histogram-based assessment of lung density. We analysed levels of MMPs and tissue inhibitors of MMPs (TIMPs) in bronchoalveolar lavage (BAL) and assessed their relationship with these emphysema sub-types. RESULTS: The most prevalent emphysema subtypes in COPD subjects were mild and moderate centrilobular (CLE) emphysema, while only small amounts of severe centrilobular emphysema, paraseptal emphysema (PSE) and panlobular emphysema (PLE) were present. MMP-3, and -10 associated with all emphysema sub-types other than mild CLE, while MMP-7 and -8 had associations with moderate and severe CLE and PSE. MMP-9 also had associations with moderate CLE and paraseptal emphysema. Mild CLE occurred in substantial quantities irrespective of whether airflow obstruction was present and did not show any associations with MMPs. CONCLUSION: Multiple MMPs are directly associated with emphysema sub-types identified by CT imaging, apart from mild CLE. This suggests that MMPs play a significant role in the tissue destruction seen in the more severe sub-types of emphysema, whereas early emphysematous change may be driven by a different mechanism. TRIAL REGISTRATION: Trial registration number NCT01701869
- …