52,282 research outputs found

    Shortest Path Computation with No Information Leakage

    Get PDF
    Shortest path computation is one of the most common queries in location-based services (LBSs). Although particularly useful, such queries raise serious privacy concerns. Exposing to a (potentially untrusted) LBS the client's position and her destination may reveal personal information, such as social habits, health condition, shopping preferences, lifestyle choices, etc. The only existing method for privacy-preserving shortest path computation follows the obfuscation paradigm; it prevents the LBS from inferring the source and destination of the query with a probability higher than a threshold. This implies, however, that the LBS still deduces some information (albeit not exact) about the client's location and her destination. In this paper we aim at strong privacy, where the adversary learns nothing about the shortest path query. We achieve this via established private information retrieval techniques, which we treat as black-box building blocks. Experiments on real, large-scale road networks assess the practicality of our schemes.Comment: VLDB201

    Violation of hyperbolicity via unstable dimension variability in a chain with local hyperbolic chaotic attractors

    Full text link
    We consider a chain of oscillators with hyperbolic chaos coupled via diffusion. When the coupling is strong the chain is synchronized and demonstrates hyperbolic chaos so that there is one positive Lyapunov exponent. With the decay of the coupling the second and the third Lyapunov exponents approach zero simultaneously. The second one becomes positive, while the third one remains close to zero. Its finite-time numerical approximation fluctuates changing the sign within a wide range of the coupling parameter. These fluctuations arise due to the unstable dimension variability which is known to be the source for non-hyperbolicity. We provide a detailed study of this transition using the methods of Lyapunov analysis.Comment: 24 pages, 13 figure

    Genetic distance predicts trait differentiation at the subpopulation but not the individual level in eelgrass, Zostera marina.

    Get PDF
    Ecological studies often assume that genetically similar individuals will be more similar in phenotypic traits, such that genetic diversity can serve as a proxy for trait diversity. Here, we explicitly test the relationship between genetic relatedness and trait distance using 40 eelgrass (Zostera marina) genotypes from five sites within Bodega Harbor, CA. We measured traits related to nutrient uptake, morphology, biomass and growth, photosynthesis, and chemical deterrents for all genotypes. We used these trait measurements to calculate a multivariate pairwise trait distance for all possible genotype combinations. We then estimated pairwise relatedness from 11 microsatellite markers. We found significant trait variation among genotypes for nearly every measured trait; however, there was no evidence of a significant correlation between pairwise genetic relatedness and multivariate trait distance among individuals. However, at the subpopulation level (sites within a harbor), genetic (FST) and trait differentiation were positively correlated. Our work suggests that pairwise relatedness estimated from neutral marker loci is a poor proxy for trait differentiation between individual genotypes. It remains to be seen whether genomewide measures of genetic differentiation or easily measured "master" traits (like body size) might provide good predictions of overall trait differentiation

    Carrier drift velocity and edge magnetoplasmons in graphene

    Get PDF
    We investigate electron dynamics at the graphene edge by studying the propagation of collective edge magnetoplasmon (EMP) excitations. By timing the travel of narrow wave-packets on picosecond time scales around exfoliated samples, we find chiral propagation with low attenuation at a velocity which is quantized on Hall plateaus. We extract the carrier drift contribution from the EMP propagation and find it to be slightly less than the Fermi velocity, as expected for an abrupt edge. We also extract the characteristic length for Coulomb interaction at the edge and find it to be smaller than for soft, depletion edge systems.Comment: 5 pages, 3 figures of main text and 6 pages, 6 figures of supplemental materia

    Non-Markovian temporal networks with auto- and cross-correlated link dynamics

    Get PDF
    Many of the biological, social and man-made networks around us are inherently dynamic, with their links switching on and off over time. The evolution of these networks is often observed to be non-Markovian, and the dynamics of their links are often correlated. Hence, to accurately model these networks, predict their evolution, and understand how information and other relevant quantities propagate over them, the inclusion of both memory and dynamical dependencies between links is key. In this article we introduce a general class of models of temporal networks based on discrete autoregressive processes for link dynamics. As a concrete and useful case study, we then concentrate on a specific model within this class, which allows to generate temporal networks with a specified underlying structural backbone, and with precise control over the dynamical dependencies between links and the strength and length of their memories. In this network model the presence of each link is influenced not only by its past activity, but also by the past activities of other links, as specified by a coupling matrix, which directly controls the causal relations, and hence the correlations, among links. We propose a maximum likelihood method for estimating the model's parameters from data, showing how the model allows a more realistic description of real-world temporal networks and also to predict their evolution. Due to the flexibility of maximum likelihood inference, we illustrate how to deal with heterogeneity and time-varying patterns, possibly including also nonstationary network dynamics. We then use our network model to investigate the role that, both the features of memory and the type of correlations in the dynamics of links have on the properties of processes occurring over a temporal network. Namely, we study the speed of a spreading process, as measured by the time it takes for diffusion to reach equilibrium. Through both numerical simulations and analytical results, we are able to separate the roles of autocorrelations and neighborhood correlations in link dynamics, showing that not only is the speed of diffusion nonmonotonically dependent on the memory length, but also that correlations among neighboring links help to speed up the spreading process, while autocorrelations slow it back down. Our results have implications in the study of opinion formation, the modeling of social networks, and the spreading of epidemics through mobile populations

    Suppression of Superconductivity in Mesoscopic Superconductors

    Full text link
    We propose a new boundary-driven phase transition associated with vortex nucleation in mesoscopic superconductors (of size of the order of, or larger than, the penetration depth). We derive the rescaling equations and we show that boundary effects associated with vortex nucleation lowers the conventional transition temperature in mesoscopic superconductors by an amount which is a function of the size of the superconductor. This result explains recent experiments in small superconductors where it was found that the transition temperature depends on the size of the system and is lower than the critical Berezinsk\u{i}-Kosterlitz-Thouless temperature.Comment: To appear in Phys. Rev. Lett. Vol. 86 (15 Jan. 2001

    Variable Star Candidates in an ACS Field of M31

    Full text link
    A search for variable stars is performed using two epochs of Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) imaging data for a 9.28 square arcminute portion of M31. This data set reveals 254 sources that vary by at least 4-sigma between epochs. The positions and 2-epoch B-band (equivalent) photometry of these sources are presented. The photometry suggests that this catalog includes most of the RR Lyrae population of this portion of M31.Comment: 22 pages, 3 tables, 5 figures, accepted for publication in A

    Expanded Iron UTA spectra -- probing the thermal stability limits in AGN clouds

    Get PDF
    The Fe unresolved transition array (UTAs) produce prominent features in the 15-17?A wavelength range in the spectra of Active Galactic Nuclei (AGN). Here we present new calculations of the energies and oscillator strengths of inner- shell lines from Fe XIV, Fe XV, and Fe XVI. These are crucial ions since they are dominant at inflection points in the gas thermal stability curve, and UTA excitation followed by autoionization is an important ionization mechanism for these species. We incorporate these, and data reported in previous papers, into the plasma simulation code Cloudy. This updated physics is subsequently employed to reconsider the thermally stable phases in absorbing media in Active Galactic Nuclei. We show how the absorption profile of the Fe XIV UTA depends on density, due to the changing populations of levels within the ground configuration.Comment: ApJ in pres

    Metal Insulator transition at B=0 in p-SiGe

    Full text link
    Observations are reported of a metal-insulator transition in a 2D hole gas in asymmetrically doped strained SiGe quantum wells. The metallic phase, which appears at low temperatures in these high mobility samples, is characterised by a resistivity that decreases exponentially with decreasing temperature. This behaviour, and the duality between resistivity and conductivity on the two sides of the transition, are very similar to that recently reported for high mobility Si-MOSFETs.Comment: 4 pages, REVTEX with 3 ps figure
    • …
    corecore