115,698 research outputs found

    Effect of thermal expansion on the linear stability of planar premixed flames for a simple chain-branching model: The high activation energy asymptotic limit

    Get PDF
    The linear stability of freely propagating, adiabatic, planar premixed ames is investigated in the context of a simple chain-branching chemistry model consisting of a chain-branching reaction step and a completion reaction step. The role of chain-branching is governed by a crossover temperature. Hydrodynamic effects, induced by thermal expansion, are taken into account and the results compared and contrasted with those from a previous purely thermal-di�usive constant density linear stability study. It is shown that when thermal expansion is properly accounted for, a region of stable ames predicted by the constant density model disappears, and instead the ame is unstable to a long-wavelength cellular instability. For a pulsating mode, however, thermal expansion is shown to have only a weak e�ect on the critical fuel Lewis number required for instability. These e�ects of thermal expansion on the two-step chain-branching ame are shown to be qualitatively similar to those on the standard one-step reaction model. Indeed, as found by constant density studies, in the limit that the chain-branching crossover temperature tends to the adiabatic ame temperature, the two-step model can be described to leading order by the one-step model with a suitably de�ned e�ective activation energy

    Gravitational Acceleration of Spinning Bodies From Lunar Laser Ranging Measurements

    Get PDF
    The Sun's relativistic gravitational gradient accelerations of Earth and Moon, dependent on the motions of the latter bodies, act upon the system's internal angular momentum. This spin-orbit force (which plays a part in determining the gravity wave signal templates for astrophysical sources) slightly accelerates the Earth-Moon system as a whole, but it more robustly perturbs that system's internal dynamics with a 5 cm, synodically oscillating range contribution which is presently measured to 4 mm precision by more than three decades of lunar laser ranging.Comment: 10 pages, PCTex32.v3.

    Conversion of LARSYS III.1 to an IBM 370 computer

    Get PDF
    A software system for processing multispectral aircraft or satellite data (LARSYS) was designed and written at the Laboratory for Applications of Remote Sensing at Purdue University. This system, being implemented on an IBM 360/67 computer utilizing the Cambridge Monitor System, is of an interactive nature. TAMU LARSYS maintains the essential capabilities of Purdue's LARSYS. The machine configuration for which it has been converted is an IBM-compatible Amdahl 470V/6 computer utilizing the time sharing option of the currently implemented OS/VS2 Operating System. Due to TSO limitations, the NASA-JSC deliverable TAMU LARSYS is comprised of two parts. Part one is a TSO Control Card Checker for LARSYS control cards, and part two is a batch version of LARSYS. Used together, they afford most of the capabilities of the original LARSYS III.1. Additionally, two programs have been written by TAMU to support LARSYS processing. The first is an ERTS-to-MIST conversion program used to convert ERTS data to the LARSYS input form, the MIST tape. The second is a system runtable code which maintains tape/file location information for the MIST data sets

    Comparison of toughened composite laminates using NASA standard damage tolerance tests

    Get PDF
    The proposed application of composite materials to transport wing and fuselage structures prompted the search for tougher materials having improved resistance to impact damage and delamination. Several resin/graphite fiber composite materials were subjected to standard damage tolerance tests and the results were compared to ascertain which materials have superior toughness. In addition, test results from various company and NASA laboratories were compared for repeatability

    Charge Detection in Phosphorus-doped Silicon Double Quantum Dots

    Full text link
    We report charge detection in degenerately phosphorus-doped silicon double quantum dots (DQD) electrically connected to an electron reservoir. The sensing device is a single electron transistor (SET) patterned in close proximity to the DQD. Measurements performed at 4.2K show step-like behaviour and shifts of the Coulomb Blockade oscillations in the detector's current as the reservoir's potential is swept. By means of a classical capacitance model, we demonstrate that the observed features can be used to detect single-electron tunnelling from, to and within the DQD, as well as to reveal the DQD charge occupancy.Comment: 4 pages, 3 figure

    The eleven observations of comets between 687 AD and 1114 AD recorded in the Anglo Saxon Chronicle

    Get PDF
    This research paper is an examination of the eleven cometary references (679AD, 729AD, 892AD, 950AD, 975AD, 995AD, 1066AD, 1097AD, 1106AD, 1110AD and 1114AD) found in the various manuscripts of The Anglo Saxon Chronicle between 678 AD and 1114 AD. The manuscripts contain more than 35 celestial observations. This is an examination of astronomical phenomena and other climatic or natural events, that are described in The Anglo Saxon Chronicle, which is also referred to as The Old English Annals

    Failure mechanisms of laminates transversely loaded by bolt push-through

    Get PDF
    Stiffened composite panels proposed for fuselage and wing design utilize a variety of stiffener-to-skin attachment concepts including mechanical fasteners. The attachment concept is an important factor influencing the panel's strength and can govern its performance following local damage. Mechanical fasteners can be an effective method for preventing stiffener-skin separation. One potential failure mode for bolted panels occurs when the bolts pull through the stiffener attachment flange or skin. The resulting loss of support by the skin to the stiffener and by the stiffener to the skin can result in local buckling and subsequent panel collapse. The characteristic failure modes associated with bolt push-through failure are described and the results of a parametric study of the effects that different material systems, boundary conditions, and laminates have on the forces and displacements required to cause damage and bolt pushthrough failure are presented

    The Dimer Model for k-phase Organic Superconductors

    Full text link
    We prove that the upper electronic bands of k-phase BEDT-TTF salts are adequately modeled by an half-filled tight-binding lattice with one site per cell. The band parameters are derived from recent ab-initio calculations, getting a very simple but extremely accurate one-electron picture. This picture allows us to solve the BCS gap equation adopting a real-space pairing potential. Comparison of the calculated superconducting properties with the experimental data points to isotropic s_0-pairing. Residual many-body or phonon-mediated interactions offer a plausible explanation of the large variety of physical properties observed in k-phase BEDT-TTF salts.Comment: 8 pages, 6 PostScript figures, uses RevTe
    corecore