2,550 research outputs found

    Is it possible to increase the sustainability of arable and ruminant agriculture by reducing inputs?

    Get PDF
    Until recently, agricultural production was optimised almost exclusively for profit but now farming is under pressure to meet environmental targets. A method is presented and applied for optimising the sustainability of agricultural production systems in terms of both economics and the environment. Components of the agricultural production chain are analysed using environmental life-cycle assessment (LCA) and a financial value attributed to the resources consumed and burden imposed on the environment by agriculture, as well as to the products. The sum of the outputs is weighed against the inputs and the system considered sustainable if the value of the outputs exceeds those of the inputs. If this ratio is plotted against the sum of inputs for all levels of input, a diminishing returns curve should result and the optimum level of sustainability is located at the maximum of the curve. Data were taken from standard economic almanacs and from published LCA reports on the extent of consumption and environmental burdens resulting from farming in the UK. Land-use is valued using the concept of ecosystem services. Our analysis suggests that agricultural systems are sustainable at rates of production close to current levels practiced in the UK. Extensification of farming, which is thought to favour non-food ecosystem services, requires more land to produce the same amount of food. The loss of ecosystem services hitherto provided by natural land brought into production is greater than that which can be provided by land now under extensive farming. This loss of ecosystem service is large in comparison to the benefit of a reduction in emission of nutrients and pesticides. However, food production is essential, so the coupling of subsidies that represent a relatively large component of the economic output in EU farming, with measures to reduce pollution are well-aimed. Measures to ensure that as little extra land is brought into production as possible or that marginal land is allowed to revert to nature would seem to be equally well-aimed, even if this required more intensive use of productive areas. We conclude that current arable farming in the EU is sustainable with either realistic prices for products or some degree of subsidy and that productivity per unit area of land and greenhouse gas emission (subsuming primary energy consumption) are the most important pressures on the sustainability of farming

    The biological effect of 2.45 GHz microwaves on the viability and permeability of bacterial and yeast cells

    Get PDF
    Microwaves are a form of non-ionizing radiation composed of electric (E) and magnetic (H) fields and are absorbed by biological tissues with a high water content. Our study investigated the effect of the E field, H field, and a combination of both (E + H) field’s exposure of structurally diverse micro-organisms, at a frequency of 2.45 GHz. We observed that the exposure to a microwave E field of an amplitude of 9.3 kV/m had no significant effect on cell viability; however, it did increase membrane permeability of Mycobacterium smegmatis to propidium iodide and to a range of different sized dextran particles in Escherichia coli, Staphylococcus aureus, Candida albicans, and M. smegmatis. The permeability of propidium iodide was observed in microwave treated cells (M. smegmatis) but not in heat-treated cells. Permeability of 3 kDa sized fluorescently labeled dextrans was observed across all cell types; however, this was found not to be the case for larger 70 kDa dextran particles. In terms of efflux, DNA was detected following E field exposure of M. smegmatis. In contrast, H field exposure had no effect on cell viability and did not contribute to increase cell’s membrane to dextran particles. In conclusion, this study shows that microwave generated E fields can temporarily disrupt membrane integrity without detrimentally impacting on cell viability. This approach has the potential to be developed as a high efficiency electropermeabilization method and as a means of releasing host DNA to support diagnostic applications

    Hyperfine frequency shift in two-dimensional atomic hydrogen

    Full text link
    We propose the explanation of a surprisingly small hyperfine frequency shift in the two-dimensional (2D) atomic hydrogen bound to the surface of superfluid helium below 0.1 K. Owing to the symmetry considerations, the microwave-induced triplet-singlet transitions of atomic pairs in the fully spin-polarized sample are forbidden. The apparent nonzero shift is associated with the density-dependent wall shift of the hyperfine constant and the pressure shift due to the presence of H atoms in the hyperfine state aa not involved in the observed bcb\to c transition. The interaction of adsorbed atoms with one another effectively decreases the binding energy and, consequently, the wall shift by the amount proportional to their density. The pressure shift of the bcb\to c resonance comes from the fact that the impurity aa-state atoms interact differently with the initial bb-state and final cc-state atoms and is also linear in density. The net effect of the two contributions, both specific for 2D hydrogen, is comparable with the experimental observation. To our knowledge, this is the first mentioning of the density-dependent wall shift. We also show that the difference between the triplet and singlet scattering lengths of H atoms, atas=30(5)a_t-a_s=30(5) pm, is exactly twice smaller than the value reported by Ahokas {\it et al.}, Phys. Rev. Lett. {\bf101}, 263003 (2008).Comment: 4 pages, no figure

    Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic

    Get PDF
    An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope (13C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements

    CD4 intragenic SNPs associate with HIV-2 plasma viral load and CD4 count in a community-based study from Guinea-Bissau, West Africa.

    Get PDF
    OBJECTIVES: The human genetics of HIV-2 infection and disease progression is understudied. Therefore, we studied the effect of variation in 2 genes that encode products critical to HIV pathogenesis and disease progression: CD4 and CD209. DESIGN: This cross-sectional study consisted of 143 HIV-2, 30 HIV-1 + HIV-2 and 29 HIV-1-infected subjects and 194 uninfected controls recruited from rural Guinea-Bissau. METHODS: We genotyped 14 CD4 and 4 CD209 single nucleotide polymorphisms (SNPs) that were tested for association with HIV infection, HIV-2 plasma viral load (high vs. low), and CD4 T-cell count (high vs. low). RESULTS: The most significant association was between a CD4 haplotype rs11575097-rs10849523 and high viral load [odds ratio (OR): = 2.37, 95% confidence interval (CI): 1.35 to 4.19, P = 0.001, corrected for multiple testing], suggesting increased genetic susceptibility to HIV-2 disease progression for individuals carrying the high-risk haplotype. Significant associations were also observed at a CD4 SNP (rs2255301) with HIV-2 infection (OR: = 2.36, 95% CI: 1.19 to 4.65, P = 0.01) and any HIV infection (OR: = 2.50, 95% CI: 1.34 to 4.69, P = 0.004). CONCLUSIONS: Our results support a role of CD4 polymorphisms in HIV-2 infection, in agreement with recent data showing that CD4 gene variants increase risk to HIV-1 in Kenyan female sex workers. These findings indicate at least some commonality in HIV-1 and HIV-2 susceptibility

    The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    Get PDF
    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the “internet of things” is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation

    Model of microwave effects on bacterial spores

    Get PDF
    A recent application of microwaves in the healthcare area is for the rapid detection of bacterial spores, particularly of clinically significant spores such as Clostridium difficile. Here, we present a working model of C. difficile spore disruption by the action of a 2.45 GHz microwave electric field, independent of overall sample heating. The model shows how inner layers of the spore with the lower complex permittivity values will be subject to higher values of the electric field. The model also shows how the electric effects can be enhanced, focusing the electric field into “hotspots” using “angled” nanoparticles, yielding effective DNA release even at low microwave power levels. The model’s predictions have been validated through experimental results, which show an enhancement of DNA release from spores

    Calcium Influx through Plasma-Membrane Nanoruptures Drives Axon Degeneration in a Model of Multiple Sclerosis

    Get PDF
    Axon loss determines persistent disability in multiple sclerosis patients. Here, we use in vivo calcium imaging in a multiple sclerosis model to show that cytoplasmic calcium levels determine the choice between axon loss and survival. We rule out the endoplasmic reticulum, glutamate excitotoxicity, and the reversal of the sodium-calcium exchanger as sources of intra-axonal calcium accumulation and instead identify nanoscale ruptures of the axonal plasma membrane as the critical path of calcium entry
    corecore