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Abstract 

Polyvinylpyrrolidone is a widely used in tablet formulations with the linear form 

acting as a wetting agent and disintegrant whereas the cross-linked form is a super-

disintegrant.   We have previously reported that simply mixing the commercial cross-

linked polymer with ibuprofen disrupted drug crystallinity with consequent 

improvements in drug dissolution behavior.  In this study, we have designed and 

synthesized novel cross-linking agents containing a range of oligoether moieties 

which have then be polymerized with vinylpyrrolidone to generate a suite of novel 

excipients with enhanced hydrogen-bonding capabilities.  The polymers have a 

porous surface and swell in most common solvents and in water; properties which 

suggest their value as disintegrants.  The polymers were evaluated in simple physical 

mixtures with ibuprofen as a model poorly-water soluble drug.  The results show that 

the novel PVPs induce the drug to become “X-ray amorphous”, which increased 

dissolution to a greater extent than that seen with commercial cross-linked PVP.  The 

polymers stabilize the amorphous drug with no evidence for recrystallization seen 

after 20 weeks storage. 
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Introduction 

Over the last decade, highly non-polar drugs have emerged from discovery groups as 

a consequence of the drive to improve specificity at novel target sites that are hard to 

access with traditional compounds with lesser lipophilicities.  Inherently poorly-water 

soluble, these potent compounds present considerable difficulties for enteral delivery 

and absorption.  Indeed, it has been recognized for many years that Biopharmaceutical 

Classification System (BCS) class II compounds (i.e. those with low aqueous 

solubility but high permeability
1
) can present absorption rate-limiting dissolution in 

the gastric media, impacting significantly on bioavailability.  

 

An increasingly valuable strategy for improving the bioavailability of this class of 

active pharmaceutical ingredients is to use an amorphous drug species
2-3

.  The glassy 

amorphous state theoretically has a higher apparent solubility than the crystalline 

counterpart
4
 because these two morphologies differ in the thermodynamic processes 

of breaking intermolecular associations during dissolution, i.e. enthalpy, entropy, and 

free energy
5
. This solid state manipulation can therefore be exploited as a means to 

achieve significant apparent dissolution rate enhancement. However, due to the 

inherent instability of the amorphous state, a viable dosage form requires a method of 

stabilizing this meta-stable state to prevent recrystallization to the more stable, less 

soluble crystalline form
2
. To this end, one strategy is to disperse amorphous drug in a 

polymeric matrix or gel.  Ideally, the polymer will be robust in order to withstand 

manufacture processes, will be pharmacologically inert and biocompatible with no 

appreciable toxicity and will be able to sequester the active pharmaceutical ingredient.  

 

Using differential scanning calorimetry to screen compatibility of ketoprofen with 

excipients, Mura et al.
6
 reported the loss of the drug melting peak in a simple physical 

blend with K30 polyvinylpyrrolidone (PVP).  In the same year, solid-state interactions 

in mixtures between ibuprofen and (PVP) were reported by Sekizaki et al
7
; the 

formation of amorphous ibuprofen in the mixtures was enhanced by elevated storage 

temperatures, a high weight ratio of PVP and by using lower molecular weight PVP.  

In our earlier work, we employed cross-linked polyvinylpyrrolidone (PVP-CL) as a 

carrier in physical mixtures with ibuprofen
8-10

 with results suggesting that disruption 

of drug crystallinity was facilitated primarily through hydrogen bonding with a 



secondary mechanism involving electrostatic/hydrophobic interactions through the 

ibuprofen benzene ring. Following grinding and mixing, hydrogen-bonding between 

ibuprofen dimers and linear PVP (Povidone K25) was reported
11

. In contrast, Di 

Martino reported no evidence for interaction between ketoprofen and linear PVP K30 

after gentle mixing, although powder X-ray diffraction showed that the drug lost 

crystallinity following 10 months storage
12

.  More recent studies using different 

propionic acids with linear PVP K30 have further confirmed our earlier findings that 

hydrogen bonding and electrostatic interactions are key determinants in the solid-state 

interactions between ibuprofen and polyvinylpyrrolidones
13, 14

 whilst illustrating the 

role of relative humidity.                 

   

Whilst the mechanisms underpinning the thermodynamic drivers remain unclear, our 

own previous work using cross-linked PVP and the literature employing linear PVP 

with aryl propionic acids, shows that inter-molecular hydrogen bonding is the driving 

force for retention and stabilization of the drug as “X-ray amorphous”; here, we 

define “X-ray amorphous” as meaning the absence of clear Bragg diffraction peaks 

from the powder X-ray diffraction pattern, whilst recognizing that this does not 

necessarily mean that the material in question is truly amorphous; it may in fact be 

nanocrystalline.  Thus, through tailoring the molecular composition of cross-linked 

PVPs by designing functionalized cross-linking agents, the stabilizing properties of 

the polymer can be optimized.  We sought to synthesize novel cross-linking agents 

where the NVP residues were connected by hydrophilic oligoethers rather than 

hydrophobic alkane-based residues as in all previous work
15, 16

. PEG polymers have 

been used for solid dispersions and potential hydrogen bonding mechanisms have 

previously been reported
17

. We hypothesise that the enhanced hydrogen bonding 

potential of the oligoethers would further aid disruption of ibuprofen crystallinity 

when incorporated into pharmaceutical formulations. Herein we report the design, 

synthesis and pharmaceutical uses of a series of novel polyvinylpyrrolidones built 

with oligoether cross-linkers of varying polarities at different molar fractions, and 

demonstrate the ability of these polymers to create stable amorphous delivery systems 

when simply mixed with the model poorly-water soluble drug ibuprofen.  

 



Experimental Section 

Materials 

Ibuprofen (IB) was obtained from Wessex Fine Chemicals (Horsham, UK) and 

commercial cross-linked polyvinylpyrrolidone XL-10 (PVP-CL) was from ISP 

Technologies Inc.  All other reagents were purchased from Sigma-Aldrich Chemical 

Company (Poole, UK) and were used as received except for N-vinylpyrrolidone 

(NVP) which was freshly distilled prior to use and 2,2’ azobisisobutyronitrile (AIBN) 

which was recrystallized from methanol.      

 

Solvents were also purchased from Sigma-Aldrich Chemical Company (Poole, UK) 

and were used without purification except; dichloromethane was pre-dried over 

calcium hydride prior to distillation; tetrahydrofuran (THF) was distilled from sodium 

and benzophenone prior to use; pyridine was dried over potassium hydroxide prior to 

distillation; benzene used in polymerization reactions was degassed for 30 minutes 

prior to use.  All glassware was dried overnight in an oven at 120 °C prior to use. 

 

Synthetic methods 

Synthesis of cross-linkers 

Two novel cross-linking agents were synthesized for subsequent use in 

polymerization with N-vinylpyrrolidone.  The cross-linkers were designed to possess 

appropriate reactivity ratios with the monomer and hence coupled two NVP units with 

oilgoether chains of varying lengths, as illustrated in Figure 1.
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Figure 1.  Chemical structure of the novel cross-linking agents designed to 

polymerize with vinylpyrrolidone and offering differing lengths of oligoether chains.  

A). 3,3'-(3,6,9,12-Tetraoxatetradecane-1,14-diyl)bis(1-vinyl-2-pyrrolidinone); B). 

3,3'-(3,6,9,12,15,18-Hexaoxaicosane-1,20-diyl)bis(1-vinyl-2-pyrrolidinone). 

 

 

A stirring solution of 3-(2-hydroxyethyl)-1-vinyl-2-pyrrolidinone (1.25 eq., 11.0 

mmol, 1.70 g) in anhydrous N,N-dimethylformamide (DMF; 60 mL) under argon and 

at room temperature was treated with sodium hydride (60% dispersion in mineral oil, 

1.38 eq., 12.1 mmol, 0.48 g) followed by tetra-N-butylammonium bromide (0.8 

mmol, 0.35 g). The reaction mixture was stirred at 70 ºC until effervescence ceased at 

which point (3,6-dioxaoctane-1,8-diyl)bis(4-methyl-benzenesulfonate) (4.4 mmol, 

2.02 g) was added and stirring was continued for a further 7 hours. Following 

filtration, the filtrand was washed with successive volumes of dichloromethane (5 × 

10 mL) until there was no sign of product via TLC. The resulting organic fractions 

were concentrated in vacuo prior to subjecting the crude to flash column 

chromatography (SiO2, ethyl acetate/hexane 9:1 v/v) following which 3,3'-(3,6,9,12-

tetraoxatetradecane-1,14-diyl)bis(1-vinyl-2-pyrrolidinone) was obtained as a pale 

yellow oil (0.78 g, 1.84 mmol, 42% yield).   

 

Likewise, a stirring solution of 3-(2-hydroxyethyl)-1-vinyl-2-pyrrolidinone (1.25 eq., 

8.5 mmol, 1.31 g) in anhydrous DMF (60mL) under argon and at room temperature 

was treated with sodium hydride (60% dispersion in mineral oil, 1.38 eq., 9.4 mmol, 

0.37 g) followed by tetra-N-butylammonium bromide (12.5 mol%, 0.27 g). The 

reaction mixture was stirred at 70 ºC until effervescence ceased at which point 

(3,6,9,12–tetraoxatetradecane–1,14-diyl)bis(4-methyl-benzenesulfonate) (3.4mmol, 

1.86g) was added and stirring was continued for a further 7 hours. Following filtration 

the filtrand was washed with successive volumes of dichloromethane (5 × 10mL) 

until there was no sign of product via TLC. The resulting organic fractions were 

concentrated in vacuo prior to subjecting the crude to flash column chromatography 

(SiO2, ethyl acetate/hexane 9:1 v/v) following which 3,3'-(3,6,9,12,15,18-

hexaoxaicosane-1,20-diyl)bis(1-vinyl-2-pyrrolidinone) was obtained as a pale yellow 

oil (0.71 g, 1.39 mmol, 41% yield). 



 

Polymerization 

2,2’-Azoisobutyronitrile (AIBN; 1 mol%) was weighed into a flame-dried Schlenk 

tube under argon followed by N-vinylpyrrolidinone. The cross-linker (A or B, Table 

1) was weighed into a vial and dissolved in benzene before being transferred to the 

Schlenk tube. The reaction was stirred at room temperature whilst the Schlenk tube 

was evacuated and purged with argon three times. The resulting colourless solution 

was stirred magnetically for 15 hours at 60 ºC and under argon during which time the 

viscosity of the generated polymer reached a sufficiently high level to prevent stirring. 

Once cooled, the tough gel was cut into small pieces and subjected to Soxhlet 

extraction with chloroform before the polymer was dried in a vacuum oven (50 ºC, 10 

mmHg, 48 hours). The polymers were then size reduced (planetary ball mill; 1 hour) 

followed by additional drying in a vacuum oven (50 ºC, 10 mmHg, 18 hours) which 

provided fine white polymer powders that were sieved (Fritsch Vibratory Sieve 

Shaker, Germany) to recover particle sizes between 30-50μm for subsequent studies, 

the same size range as the commercial cross-linked polyvinylpyrrolidone (PVP-CL 

XL10). 

 

The two cross-linking agents were used in different proportions to generate varied 

cross-linking densities in the novel polymers (Table 1).  For simplicity, polymers 

using the shorter tetra-oligo linker are given the prefix “5” and those synthesised 

using the longer hexa-oligo linker are prefixed with “7”.   To include the varying 

percentage of cross-linker used in the reactions, the polymers are then designated with 

either 1, 2.5 or 5%.  Thus, 5 PVP 1% is the polymer synthesised using the shorter 

tetra-oligo cross-linking agent at 1% in the reaction whereas 7 PVP 5% is constructed 

from the longer hexa-oligo linker included at 5% in the polymerisation reaction.      

 

 

Cross-

linker 

Percentage cross-linker used in reaction 

1.0 wt% 2.5 wt% 5.0 wt% 

NVP Benzene Yield NVP Benzene Yield NVP Benzene Yield 

A 

(short) 

8.00g 10.0 mL 7.30g 

90.3% 

8.00g 10.0 mL 7.16g 

87.3% 

6.52g 8.1 mL 6.18g 

90.2% 

B 

(long) 

8.00g 10.0 mL 7.22g 

89.4% 

8.00g 10.0 mL 7.11g 

86.7% 

6.52g 8.1 mL 6.24g 

91.1% 

 



Table 1.  Amounts of reagents used in polymerisation reactions.   Cross-linker A 

(short) is 3,3'-(3,6,9,12-tetraoxatetradecane-1,14-diyl)bis(1-vinyl-2-pyrrolidinone); B 

(long) is 3,3'-(3,6,9,12,15,18-hexaoxaicosane-1,20-diyl)bis(1-vinyl-2-pyrrolidinone). 
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Figure 2.  General reaction scheme for synthesis of novel cross-linked 

polyvinylpyrrolidones  

 

Analytical methods 

Prior to polymerization, the novel cross-linking agents were characterized by thin 

layer chromatography, by 
1
H NMR and 

13
C NMR spectra (Bruker AC250 

spectrometer, 250 and 62.5 MHz respectively), using Fourier Transform infrared 

spectroscopy (Perkin Elmer 1720-X,), and mass spectrometry (Fiscon VG Autospec 

mass spectrometer with chemical ionization).  The results confirmed the structures 

reported in Figure 1; data can be retrieved as Supporting information and is available 

free of charge via the internet at http://pubs.acs.org.      

 



Illustrating their cross-linked natures, the polymers did not dissolve in common 

solvents but swelled prodigiously in, for example, dichloromethane, N,N-

dimethylformamide, methanol and dimethylsulfoxide; thus mass spectrometry and 

NMR analysis was problematic. The polymers were characterized by their glass 

transition temperatures detected by differential scanning calorimetry which was 

calibrated using indium (melting point 156.6°C, ΔHf 28.4 J/g) and zinc (melting point 

419.6°C, ΔHf 108.2 J/g).  Samples (~6 mg) were accurately weighed into pin-holed 

aluminum pans then heated at 20°C/min to 300°C in a Mettler Toledo DSC 823E 

under a purge of dry nitrogen gas.  The samples were held at 300°C for 1 minute 

before cooling at 20°C/min to 0°C and then reheated at 20°C/min to 300°C; glass 

transition temperatures were determined during the second heating cycle, after 

controlling the thermal history of the polymers.         

 

The surface morphologies of the polymer particles (and physical mixtures of 

drug:polymers during pharmaceutical evaluation)  were visualized using a LEO 145 

OVP Scanning Electron Microscope.  Samples were mounted onto aluminum stubs 

using double sided adhesive tape before coating with gold in a high resolution sputter 

coater (Edwards Sputter Coater S150B).   

 

Infrared spectra of the polymers were collected using a Perkin Elmer Spectrum 100 

FT-IR spectrometer equipped with a universal ATR sampling accessory.  Typically 

100 scans collected at 4 cm
-1

 were averaged for each polymer.  The same parameters 

were used to analyze drug:polymer mixtures.    

 

Pharmaceutical evaluation 

Preparations of physical mixtures 

Prior to preparing physical mixtures, both ibuprofen and the novel cross-linked PVPs 

were sieved (Fritsch Vibratory Sieve Shaker, Germany). The same sieve fraction as 

that of commercial PVP-CL, namely 30-50 μm, was collected for further use, thus 

reducing potential variations as a result of differences in polymer particle sizes. 

 In the case of IB, the sieve fraction 75-180 μm was chosen to eliminate both large 

aggregates and “fine” particles which would be unfavorable in mixing.  Physical 

mixtures of IB and polymers (novel PVPs and PVP-CL) were prepared containing 

30% by weight IB to replicate the optimum drug:polymer ratio identified in our 



previous studies with PVP-CL
6
. The batch size was 4g and all samples were mixed 

for 15 minutes in a sealed container using a Turbula mixer (Glen Creston Ltd, UK).  

Likewise, controls of IB and polymers alone were treated for 15 minutes in the mixer 

to parallel any effects arising from attrition.  All samples were stored in sealed glass 

vials before analysis. 

 

The homogeneity of each physical mixture was confirmed.  Drug contents in three 

samples (30 mg) taken randomly from each physical mixture were determined by UV 

spectroscopy at 222 nm (Varian Cary 50 Bio UV-Visible Spectrophotometer, US) 

against a calibration curve; measured IB contents were between 29.83-30.06% 

(theoretical contents 30%), showing that all mixtures were homogeneous. 

Dissolution testing 

Dissolution testing of the physical mixtures and samples of pure IB (75-180 μm) was 

carried out using the paddle method (British Pharmacopeia, 2011) under sink 

conditions in pH 5.5 phosphate buffer at 37±1
o
C and 50 rpm. Solubility of IB in the 

buffer at 37
o
C was 0.55 ± 0.01 mg/mL so samples equivalent  

to 18 mg of pure IB were transferred to 1000 mL of the dissolution media to ensure 

sink conditions. Aliquots (4 mL) were withdrawn periodically 

up to 180 minutes and filtered (Millex-HA, Syringe Driven Filter Unit, 0.45 μm, 

Fisher Scientific UK) before IB absorbance was measured at 222 nm (Varian Cary 50 

Bio UV-Visible Spectrophotometer, US).  IB concentrations were calculated from a 

calibration curve in the same buffer and results are expressed as percentage IB 

released from the mean of triplicate tests.  

Differential scanning calorimetry  

DSC analysis of mixtures used a Perkin-Elmer 7 series Thermal Analysis System with 

nitrogen purge. The calorimeter was calibrated with pure indium (melting point 

156.6
o
C, ∆Hf = 28.4 J/g) and zinc (melting point 419.6

o
C, ∆Hf = 108.2 J/g). Samples 

5 - 10 mg) were accurately weighed then heated from 25
 
– 95

o
C at 10

o
C/min. The data 

from the thermal profiles was used to indicate drug crystallinity, according to: 

 



Percent crystallinity= %100
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Where ΔH is the melting enthalpy of the physical mixture (J/g), ΔHIB is the melting 

enthalpy of pure ibuprofen (J/g, and assumed to be 100% crystalline) and W is the 

weight fraction of ibuprofen in the physical mixture (i.e. W=0.3). All analyses were in 

triplicate. 

Powder X-ray diffraction  

Powder X-ray diffraction (PXRD) patterns were recorded using a D8 Advance 

Diffractometer (Bruker AXS) operating in Bragg-Brentano (flat plate) geometry 

under the following conditions: target CuKα1 (λ = 1.54056Å); voltage 40 kV; current 

40 mV. The data were collected from 5-602using a step size of 0.010 2. The 

scanned samples were placed in a standard holder and the surface of the material 

carefully smoothed in order to minimize and zero point error.  

 

Results and discussion  

 

Monomer design and synthesis 

Previous work has shown that there is a large difference in reactivity ratios between 

the vinyl group in NVP and well-studied monomers such as methacrylate and 

styrene
18,19

. Thus, attempts to co-polymerize commercial cross-linkers such as 

ethylene dimethacrylate and divinylbenzene with NVP do not result in random, 

homogeneously cross-linked co-polymers that are the target of this work.  

 

The problem of the incompatibility of reactivity ratios between NVP and commercial 

cross-linking monomers has been elegantly overcome by White et al
15,16

. During 

fundamental studies into the kinetics of NVP polymerizations they produced a novel 

cross-linker, synthesized by the addition of two equivalents of NVP to 1,6-

dibromohexane under basic conditions. The resulting cross-linker, containing two 

NVP residues, was found to be readily compatible with NVP under photo-initiated 

free radical polymerization conditions, producing homogeneously cross-linked 

materials. This approach to synthesizing cross-linked NVP has recently been 



exploited by Engström et al. to produce supports for solid phase synthesis and water 

swellable drug delivery systems
20-22

.   

 

Our targeted diNVP cross-linkers were accessed through the addition of the known 

hydroxy functionalized NPV derivative
21,22

 to either of the commercially available 

ditosylates (Figure 3). It should be noted that attempts to form oligoether cross-linkers 

by direct addition of NVP to the ditosylates under basic conditions failed as a 

consequence of over alkylation of the NVP ring, which led to a complex mixture of 

cyclic and oligomeric species.  In our cross-linkers, both NVP units and the oligoether 

chains appear to be hydrogen bond active.  It was expected that modulating the 

oligoether chain and the density of cross-linking might additionally affect the number 

of hydrogen bonding sites and also their accessibility in the PVP network. 
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Figure 3.  Synthesis of diNVP cross-linkers.   Reagents and conditions: i) NaH, 

DMF, cross-linker A; 42%: cross-linker B; 41% (both isolated as a mixture of 

diastereomers). 

 

As our cross-linkers are NVP derivatives, they were expected to possess similar 

reactivity ratios as NVP (as a result of structural similarity) and so co-polymerize 

easily with NVP without compositional drift.  Indeed, the syntheses of our novel 

PVPs via free radical polymerization succeeded, affording the six polymers (Figure 2) 

varying in the length of the oligoether chain (PVPs with the shorter and longer 

oligoether chain were abbreviated as “5 PVP” and “7 PVP”, respectively) and in the 

density of cross-linking (the cross-linker content in the feed polymerisation mixture 

were 1, 2.5 or 5 wt%).  

 

 



Analysis of novel polymers 

Following polymerization, crude cross-linked PVPs were pale yellow glasslike 

materials. Soxhlet extraction and grinding in a planetary ball mill followed by drying  

in a vacuum oven afforded the novel PVPs as white powders. One  

of the main properties of the obtained materials was their insolubility in all  

the usual solvents. The polymers swelled prodigiously in most common organic 

solvents (dichloromethane, N,N-dimethylformamide, methanol, dimethyl sulfoxide) 

and also in water; the swelling behavior of our novel polymers in comparison with 

commercial PVP-CL can be retrieved as Supporting information and is available free 

of charge via the internet at http://pubs.acs.org.  

 

Scanning electron microscopy showed that the novel polymers presented a very rough 

“popcorn-like” appearance, a surface morphology that is similar to commercial PVP-

CL, as illustrated in Figure 4. The presence intra-particle pores and expanded surface 

area make the newly synthesized PVPs interesting materials to investigate in terms of 

potential application as a drug carrier. 

 

 

A)   B)  C)  

 

Figure 4.  Surface morphology of A) 5 PVP 5%; B) 7 PVP 5%; C) PVP-CL. 

 

FT-IR spectra of all the novel polymers, as well as PVP-CL, were similar.  

Absorption bands appearing in the region 3000-2800 cm
-1

 were attributed to the C-H 

stretching modes, whereas absorption bands at 1420 cm
-1

 were assigned as the C-H 

bending modes. All spectra featured a strong absorption band at 1670 cm
-1

 as a result 

of the C=O stretching modes of the N-vinylpyrrolidone rings. Another common 

absorption band exhibited around 1300 cm
-1

 was attributed to a C-N stretching 

vibration.  Spectra can be retrieved as Supporting information and are available free 

of charge via the internet at http://pubs.acs.org. 



 

In characterizing the novel polymers, glass transition temperatures (Tg) were 

determined and compared with that of PVP-CL. The literature provides several 

conflicting values for the glass transition temperatures of commercial PVP, ranging 

from 54
o
C to 195

o
C

23-25
. These deviations are attributed to differences in the structure 

of the polymer (e.g. linear or cross-linked polymer), the presence absorbed moisture 

and the method of analysis.  Here, glass transition temperatures of the novel PVPs and 

commercial cross-linked PVP-CL were determined by differential scanning 

calorimetry.  In order to avoid artifacts as a result of prior storage and handling, glass 

transition temperatures were measured during a second heating cycle; the first heating 

cycle allowed removal of any residual moisture (which would act as a plasticizer) and 

erased the effects of thermal history that could obscure the interpretation of Tg. In the 

analyzed samples, glass transition temperatures were observed over a temperature 

range, thus the Tg was taken as the midpoint of transition by extrapolation of the 

enthalpy curve. The data obtained are in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.    Glass transition temperatures of the novel cross-linked PVPs and 

                  commercial cross-linked PVP-CL 

 

All polymers featured similar and high glass transition temperatures, between 182 and 

196
o
C which demonstrates that at room temperature all these polymers are highly 

stable amorphous solids with relatively low polymer chain mobility’s. These high 

Polymer Mean glass transition temperature (Tg ), 
o
C,  

(n=3, ±SD) 

5 PVP 1% 185.5 ± 1.1 

5 PVP 2.5% 189.0 ± 1.2 

  5 PVP 5% 191.0 ± 1.0 

7 PVP 1% 182.1 ± 1.1 

7 PVP 2.5% 183.7 ± 1.2 

  7 PVP 5% 185.1 ± 1.1 

PVP-CL 195.9 ± 1.0 



glass transition temperatures are a desirable property of the novel cross-linked PVPs 

in terms of their target application as a drug carrier. Some correlation between the 

structure of the PVPs and glass transition temperature can be seen.  For example, Tg 

increased with higher density of cross-linking in the novel polymers: Tg of 5 PVP 5% 

> Tg of 5 PVP 2.5%> Tg of 5 PVP 1%. Cross-linking reduces the main-chain mobility 

of polymers and additionally reduces the distance between polymer chains (i.e. 

reduced free volume) which would increase the glass transition temperature. 

Furthermore, it was observed that novel cross-linked PVP containing longer 

oligoether chains exhibited slightly lower glass transitions than their counterparts with 

shorter oligoether chain, e.g. Tg of 5 PVP 5% > Tg of 7 PVP 5%. This suggests that 

the length of the oligoether chain can affect the distance between polymer chains and 

hence the free volume of polymer. Polymers with longer oligoether chains should 

exhibit higher free volume than their counterparts with shorter oligoether chains 

which would decrease the glass transition temperature. 

 

Pharmaceutical evaluation 

 

Example images from scanning electron microscopy of physical mixtures of drug and 

polymer are in Figure 5.  Ibuprofen displays a characteristic ‘needle’ morphology 

(Figure 5A) and there is clear evidence of these needles in the mixture with PVP-CL 

(5B). This is consistent with the previous finding of Rawlinson et al
10

 where, although 

crystalline to amorphous drug conversion occurred upon mixing and storage with 

PVP-CL, a significant part of the IB remained in a crystalline form. However for the 

physical mixtures prepared using the novel polymers, no evidence of ibuprofen 

crystals could be found when examining the samples over a range of magnifications. 

 



    A)  B)  

C)    D)  

Figure 5. SEM of A) ibuprofen and physical mixtures of ibuprofen with B) PVP-CL, 

C) 5 PVP 5% and D) 7 PVP 5% (high magnification) 

 

There are two potential explanations for these results. The first is that a ‘macro’ 

dispersion of the ibuprofen has occurred on mixing with the cross-linked PVPs, that is 

the ibuprofen particles are hidden, being reduced in size and fully embedded inside 

polymer cavities; the dimension of the PVP cavities dictates that any crystalline 

dispersed drug would be significantly size reduced. The images provide no evidence 

for this type of interaction between the drug and carrier.  The second possibility is that 

a ‘micro’ dispersion has occurred; the highly ordered crystal lattice of ibuprofen has 

been completely disrupted and the “free” ibuprofen molecules are adsorbed on the 

polymer particle surfaces or embedded within the polymer in an amorphous form.  

 

The effects of the polymer carriers on the dissolution of IB were investigated for 

physical mixtures with 30% drug contents. As IB is a weakly acidic drug (pKa=5.3), 

phosphate buffer at pH=5.5 was selected as an intermediate medium which afforded a 

relatively low drug dissolution rate so allowing greater discrimination of variations in 

dissolution profiles between IB samples whilst still permitting sink conditions to be 

maintained.  The mean (n=3) dissolution profiles of the physical mixtures of IB+PVP 

are shown in Figure 6, along with the dissolution profile for IB alone. A comparison 



of cumulative drug release during the first 15 minutes of dissolution together with that 

of pure IB is in Table 3. As can be seen from these data, physical mixtures of IB with 

novel cross-linked PVP increased the dissolution rates compared to the drug alone; 

the samples with commercial cross-linked PVP exhibited 2-fold increases in IB 

release during the initial 15 minutes of dissolution testing whereas our novel polymers 

afforded up to 3-fold increases. The results also revealed that the density of cross-

linking of novel PVP affected IB release in the order: 

 

IB+7PVP 5% > IB+7PVP 2.5% > IB+7PVP 1% 

IB+5PVP 5% > IB+5PVP 2.5% > IB+5PVP 1% 

 

Dissolution of IB was thus progressively enhanced with increasing PVP cross-linking 

density. For dissolution profiles of IB where PVPs had the same density of cross-

linking, but where the polymers possessed different lengths  

of oligoether chain (e.g. IB+5PVP 5% and IB+7PVP 5%) the apparent trend of 

increasing dissolution rate with chain length was not significant.  

 

 

 

 

Figure 6.  Dissolution profiles of ibuprofen release from: Left; physical mixtures with 

shorter oligoether linkages (5 PVP series) and Right; physical mixtures with longer 

oligoether linkages (7 PVP series), n = 3, ±SD. 

 

 



Sample Mean % IB released in 

first 15 minutes 

 (n=3, ±SD) 

Increase in initial 

dissolution, physical 

mixture/drug alone 

IB+5PVP 1% 42.2 ± 2.5 2.21 

IB+5PVP 2.5% 46.3 ± 2.2 2.43 

IB+5PVP 5% 56.3 ± 2.8 2.95 

IB+7PVP 1% 43.7 ± 2.6 2.29 

IB+7PVP 2.5% 50.8 ± 2.5 2.66 

IB+7PVP 5% 60.0 ± 2.3 3.14 

IB+PVP-CL 36.6 ± 2.5 1.92 

IB powder alone 19.1 ± 3.4 - 

 

Table 3.  Comparison of percentage IB released from the physical mixtures of 

IB+PVP with that of the pure IB during the first 15 minutes of dissolution testing 

 

The improved dissolution characteristics of physical mixtures, when compared  

to pure IB, were accompanied by differences in the appearance of the samples  

in the dissolution medium. Ibuprofen alone floated in an agglomerated form  

on the surface of the dissolution medium and did not disperse readily throughout the 

medium even after a few minutes of agitation. However, physical mixtures with all 

PVP matrices exhibited good dispersion of IB particles (significant deagglomeration) 

and the physical mixture samples readily “sank” in the dissolution medium and 

dispersed. These observations provide evidence that the novel cross-linked PVP and 

commercial cross-linked PVP-CL enhanced the wettability of the IB particles.  The 

mechanism and kinetics of IB release from the polymeric systems was explored. 

Despite the swellability of the polymers, the dissolution data fitted a first order release 

profile, consistent with drug release from a porous insoluble matrix.    

 

Differential scanning calorimetry was used to detect changes in the thermal response 

of IB in physical mixtures compared with a sample of pure IB, to estimate the level of 

disruption to IB crystallinity in the physical mixture. It is well known that a decrease 

in drug melting enthalpy could result from dissolution into the polymer matrix but our 

previous study demonstrated that the thermal results from physical mixtures 



correlated well with X-ray diffraction data and so melting enthalpy reductions can be 

used to quantify crystal disruption
10

.  Initially, all PVP cross-linked polymers were 

characterized alone; the traces showed no peaks to indicate defined phase transitions 

of the PVPs between 22
 
– 95

o
C but a broad thermal event was observed, indicative of 

polymer softening over a wide temperature range.   DSC profiles of IB and physical 

mixtures of IB with PVPs are in Figure 7.  

 

 

Figure 7.  DSC profiles of pure IB and physical mixtures of IB with PVPs.  C = 

estimate of drug crystallinity calculated from enthalpy of melt relative to that of pure 

ibuprofen, assumed to be 100% crystalline.   

                     



The DSC trace of pure IB showed a single relatively sharp endothermic peak with a 

melting temperature (peak maximum) of 77.9
o
C and enthalpy of fusion  

of 118.8 J/g. Significant changes in the peak shape, height-to-width ratio and 

temperature of melting transition of IB was observed for the drug in physical 

mixtures; the DSC curves exhibited relatively broad melting endotherms.  

The widening of the endothermic melting peak and lowering of the onset temperature 

is indicative of disruption of the IB crystalline structure in the presence of the PVPs. 

This effect is analogous to the polymers behaving as an impurity for the crystalline IB 

and provides clear evidence that the cross-linked PVP carriers interact with the drug.  

Melting points, enthalpies of fusion and estimated drug crystallinity data can be 

retrieved as Supporting information and are available free of charge via the internet at 

http://pubs.acs.org 

 

Reduction in IB crystallinity in the physical mixture with commercial cross-linked 

PVP was consistent with literature data
9
.  As evident from the DSC analysis, the 

novel cross-linked polymers appeared to be more effective in disrupting IB 

crystallinity than commercial cross-linked PVP-CL. Furthermore, the data suggests 

that the oligoether moieties incorporated into the structure of the novel cross-linked 

PVP affected the level of disruption IB crystallinity. The most disruptive novel PVPs 

contained the highest level of oligoether moieties and the highest density of cross-

linking. For the same density of cross-linking, the novel polymers containing longer 

oligoether chains (7 PVP) disrupted crystallinity to a greater extent that their 

counterparts with shorter oligoether chains (5 PVP).  

 

The increased ability of the PVPs to disrupt IB crystallinity may arise as  

a result of the presence of oligoether moieties which could provide additional sites  

for hydrogen bonding interactions. From this, a hypothesis can be proposed that  

a greater number of hydrogen bonding sites and/or hydrogen bonding sites  

that may display stronger bonding potential due to neighbor influences will enable a 

greater degree of disruption of the IB crystal lattice. 

 

In probing molecular interactions between IB and PVP, FT-IR spectra of the PVPs  

and crystalline IB were used as references for comparison with spectra of  

the physical mixtures. Functional groups with potential to form hydrogen bonding 



interactions within the physical mixture were the carboxyl group of IB  

(-C=O(OH)), the carbonyl group of the N-vinylpyrrolidone ring (-C=O) and  

the ether group in the novel PVP cross-linkers (-C-O) and so these groups were  

the focus of the FT-IR studies.  

 

Based on the structures of IB and the PVPs (Figure 8), it can be seen that the 

polymers can only act as a proton acceptor (through –C=O and –C-O), while IB can 

only act as a proton donor (through –OH in the carboxyl group). Thus, hydrogen 

bonds between IB and PVPs should be detected in the acid carboxyl absorption modes 

of IB, and PVP carbonyl or C-O absorption modes, depending on the site  

of interactions.  
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Figure 8.  Intra-molecular hydrogen bonding in ibuprofen (dimer) and potential 

interactions between IB and novel cross-linked PVPs 

 

Literature data
11

, shows that pure IB forms hydrogen bonded dimers (Figure 8), 

evidence for which can be seen in the FT-IR spectrum.  The hydroxyl (-OH) 

stretching modes of the carboxylic group appeared in the spectrum of pure IB as a 

very broad band (in region 3300-2500 cm
-1

) superimposed on the CH stretching 

modes (Figure 9).  The broad nature of the mode and its position are characteristic of 

hydrogen-bonded hydroxyl groups and reflected the dimer nature of IB.  The FT-IR 

spectrum of crystalline IB also shows the carbonyl stretching mode at 1710 cm
-1

 

O

OH O

HO



(Figure 9). However, the carbonyl stretching mode of IB dispersed into the novel 

polymers PVP shifted to higher wavenumbers as a consequence of breaking IB 

dimers due to interaction with the polymers. The mode appeared at 1723 cm
-1

 for the 

mixture of IB with commercial cross-linked PVP-CL, whereas for the samples with 

novel cross-linked PVP the shift was more dramatic, increasing with the higher the 

contents of the oligoether moieties: IB+7PVP 5% was at 1733 cm
-1

, IB+7PVP 2.5% at 

1729 cm
-1

 and IB+7PVP 1% at 1726 cm
-1

.  Thus the strength of hydrogen bonding 

interactions between IB and cross-linked PVP was dependent on the type of cross-

linker and density of cross-linking. Interestingly, the stretching mode at 1638 cm
-1 

assigned to the hydrogen bonded carbonyl groups of the PVPs remained consistent in 

intensity relative to the stretching mode at 1672 cm
-1 

which is attributed to the non-

hydrogen bonded carbonyl groups of the polymers, suggesting that not the entire 

polymer was involved in hydrogen bonding interactions with IB. 

 

 

Figure 9  FT-IR spectra of crystalline IB, IB+7PVP 5%, IB+7PVP 2.5%, IB+7PVP 

1% and IB+PVP-CL. 

 

IB 

IB+7PVP 5% 

IB+7PVP 2.5% 

IB+7PVP 1% 

IB+PVP-CL 



FT-IR was also used to probe whether hydrogen bonding occurred between  

the hydroxyl group of IB and the ether group of the PVP cross-linker in the region  

1300-1000 cm
-1

; however, these interactions could not be detected, presumably 

because the amount of the cross-linker was too low to detect any significant changes 

in the chemical environment. Similar problems were reported in  

the literature showing the inability of FT-IR to distinguish structural differences 

between linear PVP and cross-linked PVP
26, 27

. 

 

 

As meta-stable systems, amorphous drugs in, for example, solid dispersions tend to 

recrystallize with time.  In contrast, our previous work showed that physical mixtures 

of IB with PVP-CL continued to disrupt with time, rather than recrystalise
10

.  Thus, 

mixtures of ibuprofen with our most cross-linked polymers, which thermal analysis 

showed had induced greatest disruption of ibuprofen, were examined by powder X-

ray diffraction (PXRD) after 20 weeks of storage under nitrogen, alongside samples 

of polymer and drug alone.   The data (Figure 10) shows numerous distinctive 

diffraction peaks from the crystalline drug alone.  In contrast, the polymer carriers 

showed broad diffuse diffraction patterns characteristic of amorphous materials.  

 

The DSC data (Figure 7) estimated the initial content of crystalline IB in the samples 

IB+7PVP 5%, IB+5PVP 5% and IB+PVP- 30%, 32% and 62%, respectively. 

Consistent with our earlier work, after 20 weeks storage under nitrogen, all physical 

mixtures of IB with our novel and commercial cross-linked PVPs did not show any 

diffraction peaks from crystalline IB (Figure 10), showing that the reduction in 

crystallinity induced by the polymers is a kinetic process that continues over a period 

of weeks. Clearly the interactions between IB and cross-linked PVPs were sufficient 

to restrict mobility of amorphous IB and inhibit recrystallization, even in the presence 

of residual crystalline drug. Indeed, it may be that the thermodynamic driver for IB 

disruption remained and that the kinetics of the process, whilst slowed, continued for 

an extended time so allowing the 20 weeks samples to appear completely amorphous. 

 



 

 

 

Figure 11.  Powder X-ray diffraction patterns of IB, pure PVPs and physical mixtures 

of IB+PVPs after 20 weeks of storage under nitrogen 

 

From the above, it might be concluded that the thermodynamic driver for IB 

disruption remained, and that kinetics of the process, whilst slower, continued for an 

extended time. It is likely that formation of hydrogen bonds in the IB+PVP systems, 

which is  the main driver for disrupting IB crystallinity (as shown above), occurred 

not only for the “recently” prepared physical mixtures, but proceeded over the time as 

well. This conclusion could be supported by FT-IR spectra of  

the “recently” prepared physical mixtures of IB+PVP. The presence of free  

non-hydrogen bonded carbonyl groups of PVP in the FT-IR spectra indicated that not 

all hydrogen bonding sites on the PVP were occupied by IB, hence some “PVP 

hydrogen bonding potential” remained, i.e. bonding sites were unsaturated. Another 

conclusion drawn from the stability studies was that IB in the physical mixture did not 

exhibit a tendency to recrystallize, probably because interactions between IB and PVP 

restricted mobility of the amorphous IB molecules preventing recrystallization. The 

stability study may also suggest that complete drug conversion to the amorphous state 

might be achieved through alternative preparation methods that facilitate molecular 



mobility and therefore formation of these hydrogen bonds, for example solid 

dispersions manufactured via solvent or thermal methods. 

 

In addition to the formation of amorphous drug, the PVPs could improve dissolution 

of poorly-water soluble drugs by improving wetting or the generation of 

microcrystalline domains.   To explore the mechanisms underpinning the enhanced 

drug dissolution from mixtures, the percentage of IB released within the first 15 

minutes (Table 3) can be used as a marker for enhancement in dissolution and can be 

related to the percentage of drug remaining in the crystalline state as estimated from 

thermal analysis. The data (Figure 11) shows a linear relationship between amorphous 

drug fraction and ibuprofen release at 15 minutes. Such a relationship suggests that 

the predominant mechanism by which the PVPs improved ibuprofen dissolution was 

via the generation of amorphous drug rather than by other mechanisms described in 

the literature for dispersed drug in carrier materials, such as increased wettability or 

particle size reduction. 

 

 

0

10

20

30

40

50

60

70

80

90

100

10 15 20 25 30 35 40 45 50 55 60 65

%
 I
B

 c
ry

s
ta

lli
n

it
y
 

% IB released at 15 minute

 

Figure 11  Linear correlation (R
2
 = 0.97) between percentage IB crystallinity 

(estimated by thermal analysis) and IB release after 15 minutes 

 

 

Further, the molecular basis for the generation of amorphous ibuprofen in the 

mixtures can be directly related to hydrogen bonding between drug and carrier.  A 



linear relationship was found between the shift in IB carbonyl stretching modes and 

amorphous content by thermal analysis, which a carries forward to a linear 

relationship between the shift in IB carbonyl stretching mode and percentage drug 

released at 15 minutes; data can be retrieved as Supporting information and is 

available free of charge via the internet at http://pubs.acs.org.    

 

Our data clearly illustrates the primary role of hydrogen-bonding between ibuprofen 

and the polymers in stabilizing amorphous drug and by increasing the hydrogen-

bonding capacity of our carriers we generate greater crystal disruption with a 

consequent increase in dissolution rate.  However, the thermodynamic driver for this 

interaction between a crystalline drug and a polymer below its glass transition 

temperature when gently mixed remains unclear.  Polyvinylpyrrolidones are 

hygroscopic materials and previous work has shown that solid dispersions with this 

carrier can undergo moisture-mediated phase separation at high relative humidity’s
28, 

29
.  Typically, water encourages recrystallization of amorphous drugs dispersed in 

polymeric carriers but in our systems the extensive hydrogen-bonding may inhibit 

such recrystallization.   With linear PVP, drug disruption in mixtures was enhanced at 

elevated humidities
14

 forming solid dispersion type systems.  Clearly the presence of 

moisture (and drug) will plasticize the polymer, reduce its glass transition temperature 

and increase chain mobility, potentially facilitating interactions between the polymer 

proton acceptor and drug proton donor sites.          



However, we have previously explored the role that moisture may play in mediating 

interactions between PVP-CL and ibuprofen.  Adding 10% water to a simple physical 

mixture decreased the extent of crystal disruption, potentially through water 

competing for hydrogen-bonding sites in the polymer
30

.  Further, dried PVP-CL (at 

60C, 72h) was mixed with ibuprofen and again extensive crystal disruption was seen 

by X-ray diffraction
31

.  However, the polymer is hygroscopic and had adsorbed 5-6% 

moisture during the mixing process, a similar moisture content to the starting 

material.  Consequently, experiments were repeated under a vacuum of 700 mmHg 

and again, ~47% of the ibuprofen crystallinity was lost following simple mixing.  The 

role of external humidity and adsorbed water in facilitating the interactions between 

PVP-CL and ibuprofen is currently under further investigation.   

Finally, ibuprofen has a relatively low melting point (~78C) which may suggest 

facile intra-molecular bond breakage to permit hydrogen-bonding with the polymer.  

It was suggested that enantioselective interactions occurred between ibuprofen and 

PVP when crystal disruption was compared between the S(+)-enantiomer (melting 

point ~ 52C) and the racemate
32

.  Counter-intuitively, when a series of propionic 

acids were evaluated with increasing melting points (ibuprofen < ketoprofen < 

flurbiprofen < fenbufen), crystal disruption following 60 minutes of mixing increased 

with increasing melting points
31

.   Using a similar series, subsequent work by Gashi et 

al showed that only ibuprofen spontaneously dispersed in linear PVP, attributed 

partially to its weak crystalline structure
13 

but on storage at 75% RH the rate of crystal 

disruption of ibuprofen, ketoprofen, fenbufen and naproxen were similar
14

.               

Conclusions 

Two novel oligoether cross-linking agents were designed, synthesized and 

characterized.  The cross-linkers, tailored to increase the hydrogen bonding capability 

of polyvinylpyrrolidones, were successfully polymerized with N-vinylpyrrolidone to 

provide six novel PVPs with varying cross-linking oligo chain lengths and cross-link 

densities.   These polymers swell in a range of solvents and have surface 

characteristics similar to those of commercially available cross-linked PVP.   Mixing 

ibuprofen with the polymers disrupted drug crystallinity and the degree of amorphous 

conversion was more efficient with the optimized polymers than with commercial 

PVP-CL.  The disruption of crystallinity was directly related molecular interactions 



between the drug and polymers, with evidence of ibuprofen dimer disruption and 

hydrogen bond association between the drug and carriers.  Although evidence of 

disintegrant activity was observed in the swelling studies, the amorphous drug content 

increased the dissolution rate of ibuprofen from the mixtures, and was the prime 

mechanism for this enhancement, with no evidence for wetting or microcrystalline 

drug-based mechanisms operating.  The polymers inhibit recrystallization of the drug, 

even though crystals are present in the initial mixtures, and indeed crystal disruption 

continued over time. 
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Supplementary information 

 

 

Analytical characterization of materials:  

 

3,3'-(3,6,9,12-tetraoxatetradecane-1,14-diyl)bis(1-vinyl-2-pyrrolidinone) 

 

 

 

 

TLC Rf = 0.29 (aluminium sheets coated with Merck silica gel 60 F254; ethyl 

acetate/hexane 9:1 v/v). 

 

1
H NMR (250 MHz, CDCl3) δ 1.60-1.71 (2H, m, 2 × -CHCH(H)CH2O-), 1.80 (2H, 

app. dq, J=9.0, 12.8Hz, 2 × -CH(H)CH2N-), 2.13-2.25 (2H, m, 2 × -CHCH(H)CH2O-

),  2.28-2.41 (2H, m, 2 × -CH(H)CH2N-),  2.65 (2H, app. dq, J=4.9, 9.0Hz, 2 × -CH-

C=O), 3.38 (2H, app. dt, J=8.1, 10.0Hz, 2 × -CH2N-), 3.51 (2H, app. dt, J=2.9, 9.4Hz, 

2 × -CH2N-), 3.56-3.68 (16H, m, 2 × -CHCH2CH2O-(CH2)2O-CH2-), 4.40 (2H, app. 

d, J=16.0Hz, 2 × -CH=CH2), 4.44 (2H, app. d, J=9.0Hz, 2 × -CH=CH2), 7.09 (2H, dd, 

J=9.1, 16.0Hz, 2 × -CH=CH2). 

 

13
C NMR (62.5 MHz, CDCl3) δ 24.8 (2 ×-CH2CH2N-), 31.0 (2 ×-CHCH2CH2O-), 

39.8 (2 × -CH-C=O), 42.9 (2 × -CH2N), 69.1 (2 × -CHCH2CH2O-), 70.1 (2 ×-

CH(CH2)2OCH2CH2-), 70.6 (2 × -CH(CH2)2OCH2CH2-OCH2-), 94.2 (2 × -CH=CH2), 

129.5 (2 × -CH=CH2), 175.0 (2 × -C=O).  

 

IR (CH2Cl2, cm
-1

) 2868, 1697, 1629, 1481, 1452, 1424, 1387, 1327, 1264, 1110, 

1033, 979, 845.  

 

CI-MS [MH]
+
 calculated for C22H37N2O6: 425.2651, found: 425.2646. 

 





3,3'-(3,6,9,12,15,18-hexaoxaicosane-1,20-diyl)bis(1-vinyl-2-pyrrolidinone) 

 

 

 

TLC Rf = 0.25 (aluminium sheets coated with Merck silica gel 60 F254; ethyl 

acetate/hexane 9:1 v/v). 

 

1
H NMR (250 MHz, CDCl3) δ 1.57-1.72 (2H, m, 2 × -CHCH(H)CH2O-), 1.80 (2H, 

app. dq, J=9.0, 12.8Hz, 2 × -CH(H)CH2N-), 2.12-2.25 (2H, m, 2 × -CHCH(H)CH2O-

),  2.28-2.41 (2H, m, 2 × -CH(H)CH2N-),  2.65 (2H, app. dq, J=4.9, 9.0Hz, 2 × -CH-

C=O), 3.38 (2H, app. dt, J=8.1, 10.1Hz, 2 × -CH2N-), 3.51 (2H, app. dt, J=3.0, 

10.1Hz, 2 × -CH2N-), 3.57-3.66 (24H, m, 2 × -CHCH2CH2O-(CH2CH2 O)2-CH2- ), 

4.40 (2H, app. d, J=16.0Hz, 2 × -CH=CH2), 4.44 (2H, app. d, J=9.0Hz, 2 × -

CH=CH2), 7.09 (2H, dd, J=9.0, 16.0 Hz, 2 × -CH=CH2). 

 

 
13

C NMR (62.5 MHz, CDCl3) δ 24.8 (2 × -CH2CH2N-), 31.0 (2 × -CHCH2CH2O-), 

39.8 (2 × -CH-C=O), 42.9 (2 × -CH2N), 69.1 (2 × - CHCH2CH2O-), 70.1 (2 × -

CH(CH2)2OCH2CH2-), 70.6 (2 × -CH(CH2)2OCH2CH2O(CH2)2OCH2-), 94.2 (2 × -

CH=CH2), 129.5 (2 × -CH=CH2), 175.1 (2 × -C=O). 

 

 IR (CH2Cl2, cm
-1

) 2920, 2868, 1697, 1629, 1484, 1452, 1424, 1384, 1324, 1267, 

1108, 1033, 979, 848.  

 

CI-MS [MH]
+
 calculated for C26H45N2O8: 513.3176, found: 513.3180. 



Swelling behaviour of tablets of  PVP-CL and novel PVP. 

 

Tablets of our polymers and commercial PVP-CL were prepared by direct 

compression of the powders on a single punch tablet press (RIVA Minipress MII, 

Argentina). Tablets were weighted and submerged into buffer solution simulated 

gastric fluid (pH=1) (British Pharmacopoeia, 2011) at 37 °C for 1 hour, then intact 

tablets were transferred into artificial gastric solution (pH=6.8) (US Pharmacopeia). 

Tablets were withdrawn from media at 5 minutes intervals, blotted and weight 

recorded. Water uptake was calculated by: 

Relative weight change = Wh - Wi 

Wi 

where Wi and Wh are the initial weight and the weight of the hydrated tablet, 

respectively. 

Commercial PVP-CL tablets rapidly disintegrated at pH1.0. The 5 PVP series of 

polymers swelled significantly at pH 1.0 with the greatest degree of swelling seen for 

the most highly cross-linked polymer, 5 PVP 5%.  However, all tablets disintegrated 

within 1 hour and so could not be transferred to the second buffer at pH 6.8.  Such 

swelling behaviour indicates that these novel polymers would be useful for rapid 

tablet disintegration and consequently rapid absorption in the upper G.I. tract.  In 

contrast, the longer cross-linker-containing polymers showed varied behaviour in the 

different buffers; the more highly cross-linked systems 7 PVP 2.5% and 7 PVP 5% 

did not swell at pH 1.0 and disintegrated rapidly, as was the case for the commercial 

PVP-CL.  However, 7 PVP 1%, containing the lowest cross-link density, did swell 

prodigiously at pH1.0 and the disintegrated relatively slowly when transferred to pH 

6.8, suggesting that the polymer could be a valuable “superdisintegrant” for drug 

delivery throughout the gastrointestinal tract.  Overall, these data present a 

complicated relationship between linker chain length, cross-linking density, and 

swelling and disintegrant properties of the novel polymers.  

 



 

 

 

Swelling behaviour of tablets of polyvinylpyrrolidones showing A) 5 PVP series 

containing shorter cross-linker and B) 7 PVP series containing longer cross-linker. 

 



 

 

FT-IR spectra of novel cross-linked PVPs and commercially available PVP-CL 

 

 

 

 

 

 

 

 

 

 

7 PVP 5%  

 

 
5 PVP 5%  

 

 
7 PVP 2.5% 

5 PVP 2.5%  

 

 
7 PVP 1%  

 

 
5 PVP 1%  

 

 
PVP-CL 

 

 



 Summary of thermal analysis data for drug:polymer mixtures showing enthalpy  

of fusion for IB in the mixture and an estimate of drug crystallinity, n=3, ±SD  

 

 

Sample 

 

Fusion 

Enthalpy (J/g), 

n=3, ±SD  

 

Theoretical fusion 

enthalpy (J/g) 

 

Crystallinity 

(%), 

n=3, ±SD 

 

IB 

 

118.8 

  

100 

 

IB+PVP-CL  

 

 

22.2 ± 1.0 

 

 

 

 

 

 

 

118.8 x 0.3 =  

 

35.6 

 

62 ± 2.8 

 

 

IB+7PVP 5%  

 

 

10.6 ± 1.2 

 

30 ± 3.2 

 

IB+5PVP 5%  

 

 

11.4 ± 1.0 

 

32 ± 2.8 

 

 

IB+7PVP 

2.5% 

 

 

14.6 ± 1.1 

 

41 ± 3.0 

 

IB+5PVP 

2.5% 

 

 

15.3 ± 0.9 

 

43 ± 2.7 

 

 

IB+7PVP 1% 

 

 

17.9 ± 1.2 

 

50 ± 3.3 

 

IB+5PVP 1% 

 

 

18.6 ± 0.9 

 

52 ± 2.7 

 



Relationship between ibuprofen released at 15 minutes and alteration to the 

carbonyl stretching mode of ibuprofen 

 

 

Samples 

 

% IB released  

at 15 minute 

 

Shift in the position of the carboxyl 

stretching mode in IB (cm
-1

) 

 

IB+7PVP 5% 60 23 

IB+7PVP 2.5% 51 19 

IB+7PVP 1% 44 16 

IB+PVP-CL 37 13 
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Relationship between alteration to carbonyl stretching mode of ibuprofen and 

the percentage of amorphous ibuprofen formed in physical mixtures with PVPs 

 

 

Samples 

 

Shift in the position of the carboxyl 

stretching mode in IB (cm
-1

) 

 

 

% amorphous 

IB  

IB+7PVP 5% 23 70 

IB+7PVP 2.5% 19 59 

IB+7PVP 1% 16 50 

IB+PVP-CL 13 38 

 

 

R² = 0.9918
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