4,163 research outputs found

    Carbon Monoxide Exposure and Human Health

    Get PDF
    The primary objective of this report is to provide detailed information on the health effects of carbon monoxide. With this information, the community can judge for itself what action is deemed necessary to maintain or improve the health of its residents

    Comprehensive profiling of zebrafish hepatic proximal promoter CpG island methylation and its modification during chemical carcinogenesis

    Get PDF
    Background\ud DNA methylation is an epigenetic mechanism associated with regulation of gene expression and it is modulated during chemical carcinogenesis. The zebrafish is increasingly employed as a human disease model; however there is a lack of information on DNA methylation in zebrafish and during fish tumorigenesis. \ud \ud Results\ud A novel CpG island tiling array containing 44,000 probes, in combination with immunoprecipitation of methylated DNA, was used to achieve the first comprehensive methylation profiling of normal adult zebrafish liver. DNA methylation alterations were detected in zebrafish liver tumors induced by the environmental carcinogen 7, 12-dimethylbenz(a)anthracene. Genes significantly hypomethylated in tumors were associated particularly with proliferation, glycolysis, transcription, cell cycle, apoptosis, growth and metastasis. Hypermethylated genes included those associated with anti-angiogenesis and cellular adhesion. Of 49 genes that were altered in expression within tumors, and which also had appropriate CpG islands and were co-represented on the tiling array, approximately 45% showed significant changes in both gene expression and methylation. \ud \ud Conclusion\ud The functional pathways containing differentially methylated genes in zebrafish hepatocellular carcinoma have also been reported to be aberrantly methylated during tumorigenesis in humans. These findings increase the confidence in the use of zebrafish as a model for human cancer in addition to providing the first comprehensive mapping of DNA methylation in the normal adult zebrafish liver. \ud \u

    Re-evaluating the Cu K pre-edge XAS transition in complexes with covalent metal–ligand interactions

    Get PDF
    Three [Me2NN]Cu(h2 -L2) complexes (Me2NN ¼ HC[C(Me)NAr]2; L2 ¼ PhNO (2), ArF 2N2 (3), PhCH]CH2 (4); Ar ¼ 2,6-Me2-C6H3; ArF ¼ 3,5-(CF3)2-C6H3) have been studied by Cu K-edge X-ray absorption spectroscopy, as well as single- and multi-reference computational methods (DFT, TD-DFT, CASSCF, MRCI, and OVB). The study was extended to a range of both known and theoretical compounds bearing 2p-element donors as a means of deriving a consistent view of how the pre-edge transition energy responds in systems with significant ground state covalency. The ground state electronic structures of many of the compounds under investigation were found to be strongly influenced by correlation effects, resulting in ground state descriptions with majority contributions from a configuration comprised of a Cu(II) metal center anti-ferromagentically coupled to radical anion O2, PhNO, and ArF 2N2 ligands. In contrast, the styrene complex 4, which displays a Cu K pre-edge transition despite its formal d10 electron configuration, exhibits what can best be described as a Cu(I):(styrene)0 ground state with strong pbackbonding. The Cu K pre-edge features for these complexes increase in energy from 1 to 4, a trend that was tracked to the percent Cu(II)-character in the ground state. The unexpected shift to higher preedge transition energies with decreasing charge on copper (QCu) contributed to an assignment of the pre-edge features for these species as arising from metal-to-ligand charge transfer instead of the traditional Cu1s / Cu3d designation

    A thin plate approximation for ocean wave interactions with an ice shelf

    Full text link
    A variational principle is proposed to derive the governing equations for the problem of ocean wave interactions with a floating ice shelf, where the ice shelf is modelled by the full linear equations of elasticity and has an Archimedean draught. The variational principle is used to form a thin-plate approximation for the ice shelf, which includes water--ice coupling at the shelf front and extensional waves in the shelf, in contrast to the benchmark thin-plate approximation for ocean wave interactions with an ice shelf. The thin-plate approximation is combined with a single-mode approximation in the water, where the vertical motion is constrained to the eigenfunction that supports propagating waves. The new terms in the approximation are shown to have a major impact on predictions of ice shelf strains for wave periods in the swell regime.Comment: 19 pages, 7 figure

    Protein engineering of Pseudomonas fluorescens peroxidase Dyp1B for oxidation of phenolic and polymeric lignin substrates

    Get PDF
    Directed evolution was applied to dye-decolourizing peroxidase Dyp1B from Pseudomonas fluorescens Pf-5, in order to enhance the activity for oxidation of phenolic and lignin substrates. Saturation mutagenesis was used to generate focused libraries at 7 active site residues in the vicinity of the heme cofactor, and the libraries were screened for activity towards 2,6-dichlorophenol. Mutants N193 L and H169 L were found to show 7–8 fold enhanced kcat/KM towards DCP, and replacements at Val205 and Ala209 also showed enhanced activity towards alkali Kraft lignin. Residues near the predicted Mn(II) binding site were also investigated by site-directed mutagenesis, and mutants S223 N and H127R showed 4-7-fold increased kcat/KM for Mn(II) oxidation. Mutant F128R also showed enhanced thermostability, compared to wild-type Dyp1B. Testing of mutants for low molecular weight product release from Protobind alkali lignin revealed that mutant H169 L showed enhanced product release, compared with WT enzyme, and the formation of three low molecular weight metabolites by this mutant was detected by reverse phase HPLC analysis

    Criminal Law and Procedure

    Get PDF
    This Article surveys recent developments in criminal procedure and law in Virginia. Because of space limitations, the authors have limited their discussion to the most significant published appellate decisions and legislation

    Grayscale-to-Color: Scalable Fabrication of Custom Multispectral Filter Arrays.

    Get PDF
    Snapshot multispectral image (MSI) sensors have been proposed as a key enabler for a plethora of multispectral imaging applications, from diagnostic medical imaging to remote sensing. With each application requiring a different set, and number, of spectral bands, the absence of a scalable, cost-effective manufacturing solution for custom multispectral filter arrays (MSFAs) has prevented widespread MSI adoption. Despite recent nanophotonic-based efforts, such as plasmonic or high-index metasurface arrays, large-area MSFA manufacturing still consists of many-layer dielectric (Fabry-Perot) stacks, requiring separate complex lithography steps for each spectral band and multiple material compositions for each. It is an expensive, cumbersome, and inflexible undertaking, but yields optimal optical performance. Here, we demonstrate a manufacturing process that enables cost-effective wafer-level fabrication of custom MSFAs in a single lithographic step, maintaining high efficiencies (∼75%) and narrow line widths (∼25 nm) across the visible to near-infrared. By merging grayscale (analog) lithography with metal-insulator-metal (MIM) Fabry-Perot cavities, whereby exposure dose controls cavity thickness, we demonstrate simplified fabrication of MSFAs up to N-wavelength bands. The concept is first proven using low-volume electron beam lithography, followed by the demonstration of large-volume UV mask-based photolithography with MSFAs produced at the wafer level. Our framework provides an attractive alternative to conventional MSFA manufacture and metasurface-based spectral filters by reducing both fabrication complexity and cost of these intricate optical devices, while increasing customizability

    Hot gas ingestion characteristics and flow visualization of a vectored thrust STOVL concept

    Get PDF
    A 9.2 percent scale short takeoff and vertical landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the NASA Lewis Research Center 9- by 15-Foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issue for advanced short takeoff and vertical landing aircraft. The Phase 1 test program, conducted by NASA Lewis and McDonnell Douglas Corporation, evaluated the hot ingestion phenomena and control techniques and Phase 2 test program which was conducted by NASA Lewis are both reported. The Phase 2 program was conducted at exhaust nozzles temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/lift improvement devices which reduced the hot gas ingestion. The model support system had four degrees of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity for Phase 1 was varied from 8 to 90 kn, with primary data taken in the 8 to 23 kn headwind velocity range. Phase 2 headwind velocity varied from 10 to 23 kn. Results of both Phase 1 and 2 are presented. A description of the model, facility, a new model support system, and a sheet laser illumination system are also provided. Results are presented over a range of main landing gear height (model height) above the ground plane at a 10 kn headwind velocity. The results contain the compressor face pressure and temperature distortions, total pressure recovery, compressor face temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane temperature and pressure distributions, model airframe heating, and the location of the ground flow separation. Results from the sheet laser flow visualization test are also shown

    Atrazine Transport Within a Coastal Zone in Southeastern Puerto Rico: a Sensitivity Analysis of an Agricultural Field Model and Riparian Zone Management Model

    Get PDF
    Agrichemical runoff from farmland may adversely impact coastal water quality. Two models, the Agricultural Policy/Environmental eXtender (APEX) and the Riparian Ecosystem Management Model (REMM), were used to evaluate the movement of the herbicide atrazine to the Jobos Bay National Estuarine Research Reserve from adjacent fields. The reserve is located on Puerto Rico’s southeast coast. Edge-of-field atrazine outputs simulated with the APEX were routed through a grass-forest buffer using the REMM. Atrazine DT50 (half-life) values measured in both field and buffer soils indicated that accelerated degradation conditions had developed in the field soil due to repeated atrazine application. APEX simulations examined both the measured field and buffer soil atrazine DT50 and the model’s default value. The use of the measured field soil atrazine degradation rate in the APEX resulted in 33 % lower atrazine transport from the field. REMMsimulations indicated that the buffer system had the potential to reduce dissolved atrazine transport in surface runoff by 77%during non-tropical stormevents by increasing infiltration, slowing transport, and increasing time for pesticide degradation. During a large runoff event due to a tropical stormthat occurred close to the time of an atrazine application, the REMM simulated only a 37 % reduction in atrazine transport. The results indicate that large storm events soon after herbicide application likely dominate herbicide transport to coastal waters in the region. These results agree with water quality measurements in the reserve. This study demonstrated the sensitivity of these models to variations in DT50 values in evaluating atrazine fate and transport in the region and emphasizes that the use of measured DT50 values can improve model accuracy
    corecore