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Abstract8

This paper presents solutions to a number of problems posed for the out-9

of-plane displacement of infinite thin elastic plates that are rigidly pinned10

in periodic configurations, but that possess a finite number of ‘defects’. We11

begin by considering a single one-dimensional periodic array of pins. We12

derive an analytic solution for the displacement produced by the forced13

oscillation of the central pin in the array, and this solution is shown to14

be closely connected to the problem of scattering of plane waves by an15

array when a finite number of pins are removed. Attention then focuses16

on doubly-periodic rectangular arrays of pinned points possessing defects.17

Central to approaching such problems is an understanding of Bloch-Floquet18

waves in periodic arrays in the absence of defects and a simple method is19

described for computing the associated dispersion surfaces. The solution to20

three problems are then sought: the trapping of localized waves by a finite21

number of missing pins; trapping of waves by entire rows of missing pins;22

and the wave radiation pattern due to the forcing of a single pin.23

All problems are treated analytically by using bounded Green’s functions

for thin elastic plates, a discrete Fourier transform solution method and
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simple, explicit and rapidly convergent evaluations of the one- and two-

dimensional lattice sums that arise.

Keywords: Thin elastic plate, defects, pinned plate, scattering, forcing,24

periodic array.25

1. Introduction26

Thin elastic plates are used in many engineering applications and are27

often either bonded to a substructure along ribs or rigidly pinned by rivets.28

Determining the transmission properties due to defects in the vibrations29

along periodically ribbed elastic sheets and membranes was the subject of30

a series of significant papers published over a number of decades [e.g. 1, 2,31

3, 4, 5]. In these investigations, the elastic membrane or thin elastic plate32

is viewed in cross-section and bounded above by a two-dimensional acoustic33

fluid. The interest in such problems lies in how sound waves couple with34

vibrational modes on a periodically-supported elastic beam. The defects35

consisted of vibrating ribs and laterally displaced rib supports, the latter36

giving rise to localization effects [e.g. 6].37

Evans and Porter [7] [also see 8], motivated in part by the work men-38

tioned above, considered so-called Very Large Floating Structures in which39

they imagined a large two-dimensional thin elastic sheet secured to the sea40

bed by mooring lines that provided periodic point supports on the elastic41

sheet. In this situation, although the underlying three-dimensional incom-42

pressible fluid does not support body waves, coupling still exists between43

the fluid and elastic sheet. Their work highlighted the mathematical ele-44

gance of using point sources (or Green’s functions) to represent the effect45

of point forces on an elastic sheet. In particular, whilst wave theories such46

as acoustics, electromagnetics and elasticity are governed by second-order47
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partial differential equations, the Kirchhoff equation for a thin elastic plate48

is fourth order in space. Consequently, point sources behave like r2 log r as49

the distance r to the source is approached rather than diverging like log r as50

in source solutions to second order wave equations. This fact permits source51

functions to be used as physical representations of small clamped circular52

pins. We remark that isotropic point sources can be used as an approxi-53

mate model for acoustic wave scatterers in the limit of small, widely-spaced,54

soft-sound cylinders and long wavelengths [eg. 9, §8.2.5].55

A variety of work on two-dimensional thin elastic sheets has followed,56

mainly choosing to ignore the complication of coupling to an external fluid.57

For example, Movchan et al. [10] computed the band-gap structure for a58

doubly periodic arrangement of holes of finite radius with either clamped59

or free edges. The dispersion relation for Bloch-Floquet waves through a60

periodically pinned sheet was obtained analytically by taking the limit of61

a clamped hole radius tending to zero. This particular problem, whose62

solution also appears in Evans and Porter [8], is revisited in section 3 of63

the current paper where a simpler approach to computing the band-gap64

structure is described. Other recent related works on pinned elastic plates65

include [11, 12, 13] and [14].66

The focus of the present paper is to examine the effect of introducing67

‘defects’ into both one- and two-dimensional infinite periodic arrays of rigidly68

pinned points in a thin elastic plate. In this paper a defect will mean either69

removing one or more pins from the array, or replacing a rigid pin by one70

which is forced to oscillate periodically in time at a prescribed amplitude.71

The mathematical difficulty in solving defect problems of this type arises as72

the geometry is no longer periodic.73

Defects in one-dimensional periodic arrays have been considered in the74
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setting of the two-dimensional Helmholtz equation for a linear array of75

acoustically-hard or soft cylinders by Thompson and Linton [15]. There76

the solution is approached using the so-called ‘Modified Array Scanning77

Method’. Its use of transform methods and excitation of waves by point78

sources to represent the defects bears similarities to the approach used in the79

present paper. However, our methods proceed more directly and transpar-80

ently, evidently due to the simplicity afforded by using single point sources81

to represent pins. Earlier, Thompson and Linton [16] had used the array82

scanning method to consider the excitation of an acoustic wave field by a83

line source in the presence of a periodic array of cylinders.84

Defects in doubly-periodic arrays are of current interest in several re-85

search fields including elastodynamics [17], phononic crystals [18] and pho-86

tonic crystals [19, 20, 21, 22, 23]. Techniques for determining defect modes87

range from the method of fictitious sources, to supercell methods and multi-88

pole methods. Attention has also been focused on understanding the effects89

of defects in more complicated photonic structures such as woodpiles [24].90

Bloch-Floquet problems occur frequently in many application areas of91

the physical sciences and central to the understanding of defects in doubly-92

periodic arrays is the consideration of the associated homogeneous problem93

without defects. Often they are related to the solution of the wave (or94

Helmholtz’s) equation which requires the evaluation of lattice sums which95

in their most basic form are poorly convergent. Hence acceleration of lattice96

sums for computational purposes is crucial. As a result, efficient methods97

for the evaluation of convergent lattice sums (using Graf’s addition theorem98

and integral techniques) for Helmholtz’s equation in a doubly periodic do-99

main continue to be developed [e.g. 25], Movchan et al. [26] and Chin et al.100

[27]. Linton [28] provides an exhaustive survey of the most commonly used101
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techniques.102

In contrast to those methods cited above for Helmholtz’s equation, here103

we are able to derive convergent, readily computable lattice sums for prob-104

lems posed using the thin elastic plate equation using standard methods105

without the need to accelerate convergence characteristics. This is evidently106

a consequence of the low order of the condition applied at pinned points107

(zero) compared to the order of the governing equation (four). In particu-108

lar, this means that the Green’s function that produces the point sources109

used to represent the pinned points is bounded everywhere.110

Our general method of solution is applied first in section 2 to one-111

dimensional arrays. The roots of this method can be traced to [2] and are112

based on Fourier transforming the infinite systems of equations that arise113

from the application of pin conditions. Two distinct problems naturally114

arise: the wave radiation pattern due to the time-harmonic forcing of the115

central pin; and the scattering of plane waves by a number of missing pins116

in an array.117

Solution methods for linear periodic arrays are then extended to more118

complicated and arguably more interesting problems involving doubly-periodic119

arrays of pins, and here we investigate possible localized modes that are sup-120

ported by defects. In total, three problems are considered here: the effect121

of removing one or more pins from the plate; the wave radiation pattern122

due to the forced motion of a single pin; and the effect of removing entire123

rows of pins. These are presented in section 3, and in section 4, a selection124

of results are presented from each of the problems considered in the paper.125

The work is summarised in section 5 where an indication is given to how126

these methods may be extended to other related and physically interesting127
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problems.128

2. Defects in a single periodic array of pinned points129

An infinite thin elastic plate occupies the (x′, y′) plane having an out-130

of-plane displacement u′(x′, y′), and is assumed to be pinned rigidly along131

the line y′ = 0 at x = ma′ for m ∈ Z\M where M is a finite set which132

represents points in an otherwise periodic array which are not rigidly pinned133

(i.e. defects). In the simplest case M = {0} means all but the origin134

is pinned. The period of the array is represented by a′, and we consider135

two problems in this section. In the first, M = {0} and in its place, the136

point (0, 0) is excited by a forcing of amplitude C at angular frequency ω.137

(This problem shall be referred to as the forced pin problem.) In the second138

problem, a periodic array with defects is excited by an incident plane wave139

of fixed amplitude and angular frequency ω from infinity, propagating at an140

angle θ0 with the negative y′-axis.141

In both cases, the governing equation for a thin elastic plate is given by142

(∆′2 − k4)u′ = 0, (1)

where ∆′ is the two-dimensional Laplacian, k4 = mω2/D, m = ρh is the143

mass per unit area in terms of the plate thickness h and density ρ. Also,144

D = (1/12)Eh3/(1 − ν2) is the flexural rigidity defined in terms of Young’s145

modulus E and Poisson’s ratio ν. The conditions at the fixed pins is146

u′(ma′, 0) = 0, m ∈ Z\M. (2)

Non-dimensionalising lengths with respect to k via x = kx′, y = kx′ and147

a = ka′ with u(x, y) = u′(x′, y′)/C converts (1) and (2) into148

(∆2 − 1)u(x, y) = 0, (3)
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and149

u(ma, 0) = 0, m ∈ Z\M, (4)

where the parameter a = ka′ is the only dimensionless parameter left in this150

problem.151

We first consider the problem of pin forcing at the centre of the one-152

dimensional periodic array. This solution is then used to construct the153

solution to the scattering of plane waves by a defective array in the following154

subsection.155

2.1. Forcing of the central pin156

Here we consider the problem of forcing a single pin with unit amplitude157

in a periodic linear array of pinned points in the absence of an incident wave158

field. We use the superscript (f) throughout to distinguish this problem159

from later problems, and introduce the notation u
(f)
m = u(f)(ma, 0), m ∈ Z,160

to represent the displacement at the point x = ma in the array. For this161

problem M = {0} and the pinned conditions u
(f)
m = 0 are set for m /∈ M162

whilst at the origin u
(f)
0 = 1 is imposed. The total displacement of the plate163

can be written as164

u(f)(x, y) =

∞
∑

n=−∞

a(f)
n g(x − na, y), (5)

where g(x, y) represents a Green’s function for a source placed at the origin165

of a thin plate satisfying166

(∆2 − 1)g(x, y) = δ(x)δ(y), (6)

and given explicitly by167

g(x, y) =
i

8
(H0(r) − H0(ir)) , (7)
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where H0 represents a Hankel function of the first kind and r2 = x2 + y2.168

Note that at the origin the Green’s function is bounded as g(0, 0) = i/8.169

In (5), the coefficients a
(f)
n are to be determined. Enforcing the boundary170

conditions at each point in the array on (5) gives171

u(f)
m =

∞
∑

n=−∞

a(f)
n g((m − n)a, 0) = δm,0, (8)

for all m, where δm,n represents the Kronecker delta function. Accordingly,172

multiplying through by e−imθ and summing over all m results in173

1 =
∞
∑

m=−∞

∞
∑

n=−∞

a(f)
n g((m − n)a, 0)e−imθ , (9)

where θ refers to the standard angular polar coordinate.174

We now define the following finite Fourier transforms (Fourier series)175

with176

A(f)(θ) =

∞
∑

n=−∞

a(f)
n e−inθ, a(f)

n =
1

2π

∫ π

−π
A(f)(θ)einθdθ (10a)

G0(θ; a) =

∞
∑

n=−∞

g(na, 0)e−inθ, g(na, 0) =
1

2π

∫ π

−π
G0(θ; a)einθdθ. (10b)

The series in (10b) has been computed in Evans and Porter [7] and it177

helps to outline this process here. Thus the integral representations of the178

Hankel functions allow us to write the Green’s function as179

g(x, y) =
1

8π

∫ ∞

−∞
G (t, y)eixtdt, G (t, y) =

e−λ(t)|y|

λ(t)
− e−γ(t)|y|

γ(t)
, (11)

where180

λ(t) =







(t2 − 1)1/2, |t| ≥ 1,

−i(1 − t2)1/2, |t| < 1,
and γ(t) = (1 + t2)1/2. (12)

Applying the Poisson summation formula181

2π

∞
∑

n=−∞

f(2nπ) =

∞
∑

n=−∞

∫ ∞

−∞
e±inuf(u) du, (13)
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to expression (11) at the points (x, y) = (na, 0) and comparing with (10b)182

readily admits the convergent series183

G0(θ; a) =
1

4a

∞
∑

n=−∞

G (tn, 0), (14)

where tn = (θ + 2nπ)/a. It can be shown that the summand G (tn, 0) has184

a leading order asymptotic behaviour of a3/(2π|n|)3 as |n| → ∞, so conver-185

gence can be accelerated by writing186

G0(θ; a) =
1

4a

(

G (t0, 0) +
2a3

(2π)3
ζ(3)

)

+
1

4a

∞
∑

n=1

(

G (tn, 0) + G (t−n, 0) − 2a3

(2nπ)3

)

, (15)

where ζ denotes the Riemann zeta function. This forces (15) to converge187

like O(|n|−5). It can also be seen that G0 is both symmetric and periodic:188

G0(−θ; a) = G0(θ; a), G0(θ + 2mπ; a) = G0(θ; a) for m ∈ Z. (16)

The definitions above allow expression (9) for the forcing of a single pin to189

be written in the form190

1 = A(f)(θ)G0(θ; a), (17)

after using the convolution result for Fourier series. Rearranging (17) for191

A(f)(θ) and inverting from (10a) admits192

a(f)
n =

1

2π

∫ π

−π

einθ

G0(θ; a)
dθ. (18)

It is proved in Evans and Porter [7] that G0(θ; a) does not vanish, and193

this postpones the complications associated with singularities in integrals194

that we encounter in later parts of the paper.195
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As a corollary to the above solution, we can see from (8) that196

∞
∑

n=−∞

a
(f)
n−rg((m − n)a, 0) =

∞
∑

n′=−∞

a
(f)
n′ g((m − r − n′)a, 0)

= δm−r,0 = δm,r. (19)

Therefore, once the coefficients a
(f)
n have been determined from the problem197

of forcing a pin at the origin, the coefficients needed for forcing the rth pin198

are just a
(f)
n−r.199

In the far-field, in terms of polar coordinates (ρ, χ) centred on the ori-200

gin, we can substitute the large argument asymptotic form of the Green’s201

function from (6) into (5) to give202

u(f)(x, y) ∼ i

8

∞
∑

n=−∞

a(f)
n

(

2

πρ

)1/2

ei(ρ−na cos χ)e−iπ/4, (20)

as ρ → ∞. Alternatively we could say203

u(f)(x, y) ∼
(

2

πρ

)1/2

eiρ−iπ/4A(f)(χ), (21)

where204

A(f)(χ) =
i

8

∞
∑

n=−∞

a(f)
n e−ina cos χ ≡ i

8
A(f)(a cos χ), (22)

is the usual diffraction coefficient.205

2.2. Scattering of plane waves by defects in a 1D periodic array206

We now move on to considering plane wave scattering by a linear periodic207

array of pinned points containing a finite number of missing pins, encoded208

in the set M. The superscript (s) is used to denote quantities associated209

with this scattering problem. Here, we let u
(s)
m = u(s)(ma, 0) for all m and210

so u
(s)
m = 0 for m ∈ Z\M. The total displacement is written as211

u(s)(x, y) = u(i)(x, y) +

∞
∑

n=−∞

a(s)
n g(x − na, y), (23)
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where the prescribed incident wave plate displacement is given by212

u(i)(x, y) = eiα0x+λ(α0)y, (24)

with α0 = sin θ0 and λ(α0) = −i cos θ0 is defined in (12).213

In expression (23), the coefficients a
(s)
n , n /∈ M are to be determined,214

whilst we set a
(s)
n = 0 for n ∈ M since there is no contribution to the215

scattered field from pins that are removed from the array. Enforcing the216

pinned conditions on the general solution (23) gives217

0 = u(i)(ma, 0) +

∞
∑

n=−∞

a(s)
n g((m − n)a, 0), m 6∈ M. (25)

Note that for m ∈ M, the left hand side of the above expression is replaced218

with the unknown displacement at each of the removed pins,219

u(s)
m = u(i)(ma, 0) +

∞
∑

n=−∞

a(s)
n g((m − n)a, 0), m ∈ M. (26)

Equations (25) and (26) can consequently be combined and written in the220

suggestive form221

∑

r∈M

u(s)
r δm,r = u(i)(ma, 0) +

∞
∑

n=−∞

a(s)
n g((m − n)a, 0), m ∈ Z. (27)

The structure of (27) allows a solution to be written as a superposition of the222

separate effects of incident wave scattering by an unbroken periodic array223

and forcing of strength u
(s)
r at each of locations r ∈ M in the absence of an224

incident wave. In other words,225

a(s)
n = a(u)

n +
∑

r∈M

u(s)
r a

(f)
n−r, (28)

following use of the forcing solution (19), the coefficients a
(f)
n having previ-226

ously been determined by (18), whilst a
(u)
n is the solution of227

−u(i)(ma, 0) ≡ −eimα0a =

∞
∑

n=−∞

a(u)
n g((m − n)a, 0), m ∈ Z, (29)
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which is the equation for the scattering by an uninterrupted grating. The228

periodicity of the left-hand side of (29) implies a periodicity of the solution,229

so a
(u)
n = a

(u)
0 einα0a. Using this in (29) gives230

−1 = a
(u)
0

∞
∑

n=−∞

g(−na, 0)einα0a = a
(u)
0 G0(−α0a; a) = a

(u)
0 G0(α0a; a), (30)

using (10b) and (16), and so the final form of (28) is231

a(s)
n = − einα0a

G0(α0a; a)
+
∑

r∈M

u(s)
r a

(f)
n−r. (31)

The remaining unknowns, u
(s)
r for r ∈ M, are determined by imposing the232

remaining condition a
(s)
n = 0 for n ∈ M in (31) resulting in the linear system233

einα0a

G0(α0a; a)
=
∑

r∈M

u(s)
r a

(f)
n−r, n ∈ M. (32)

When a single pin at the origin is missing, that is M = {0}, the solution of234

(31), (32) is given explicitly by235

a(s)
n =

1

G0(α0a; a)

(

−einα0a +
a

(f)
n

a
(f)
0

)

. (33)

In the scattering problem, there are two components to the far-field: plane236

waves reflected by an uninterrupted periodic pin grating and circular waves237

emanating from the defects. In the case of a single missing pin at the origin,238

these circular waves are easily identified from the second term in (33) to be239

related to those for the forcing problem so that the diffraction coefficient for240

the circular wave component of the scattered field is simply241

A(s)(χ) =
A(f)(χ)

a
(f)
0 G0(α0a; a)

, (34)

with A(f) defined by (22). More generally, for multiple missing pins, the242

contribution from the sum in (31) to far-field circular waves results in a243

12



diffraction coefficient given by244

A(s)(χ) =
i

8

∞
∑

n=−∞

∑

r∈M

u(s)
r a

(f)
n−re

−ina cos χ

= A(f)(χ)
∑

r∈M

u(s)
r e−ira cos χ. (35)

The first term in the right-hand of either (31) or (33) accounts for the245

diffracted wave field from an unbroken periodic array and its contribution246

to the total displacement may be written as247

u(u)(x, y) = − 1

G0(α0a; a)

∞
∑

n=−∞

einα0ag(x − na, y). (36)

Using the definition (11) in the above and invoking Poisson’s summation248

formula gives249

u(u)(x, y) =
−1

4aG0(α0a; a)

∞
∑

n=−∞

eiαnx

(

e−λ(αn)|y|

λ(αn)
− e−γ(αn)|y|

γ(αn)

)

, (37)

where250

αn = α0 + 2nπ/a. (38)

We can define scattering angles, θn, defined by αn = sin θn, which extend the251

definition of α0 = sin θ0 introduced for the incident wave. Then, providing252

|αn| < 1, θn are real angles corresponding to propagating waves and we say253

that n ∈ N . (N is non-empty as it always contains the zero element.) For254

such values of n, λ(αn) = −i cos θn, allowing (37) to be written as255

u(u)(x, y) ∼ −1

4aG0(α0a; a)

∑

n∈N

eix sin θnei|y| cos θn

(−i cos θn)
(39)

as |y| → ±∞. In y > 0, (39) represents reflected plane waves propagating256

away from the array (located at y = 0) at scattering angles θn with ampli-257

tudes Rn = −i/(4aG0(α0a; a) cos θn) whilst in y < 0, the superposition of the258

incident wave field implies transmitted wave amplitudes of Tn = δn,0 + Rn.259

These are well-known effects in diffraction grating theory [7].260
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3. Defects in a doubly-periodic array of pinned points261

We now move on to consider problems involving doubly-periodic arrays262

of pinned points. Specifically, we choose to pin an infinite elastic plate at263

the points (x, y) = (na,mb) for (n,m) ∈ Z2\M, where a and b denote the264

periodicity of the rectangular lattice in the two perpendicular directions on265

the plate. The set M represents lattice indices where defects occur, i.e.266

where pins are missing. In the simplest case of a single defect at the origin,267

M = {(0, 0)}. There are two problems we can consider here. The first268

problem is one in which the origin is forced to oscillate with a set frequency269

and unit amplitude. The interest here lies in how the radiated wave energy270

may escape through the lattice to infinity as a function of angular frequency,271

ω. The second is the possibility of locating trapped modes in the vicinity of272

the defect(s) in the lattice. These are localized wave motions which oscillate273

indefinitely and do not radiate energy away to infinity within the otherwise274

periodic lattice of pinned points.275

As we shall show, both problems require information about Bloch-Floquet276

waves in an infinite doubly-periodic lattice without defects, which will ap-277

pear as a byproduct of our analysis.278

3.1. Forcing of the central pin279

Let us again consider the forcing problem first, as the defect problem can280

(as shown in §2) be written as a superposition of solutions to the forcing281

problems over the set of defects. A general solution is written as282

u(f)(x, y) =
∞
∑

n=−∞

∞
∑

m=−∞

a(f)
n,mg(x − na, y − mb), (40)

where we impose pinned conditions u
(f)
n,m ≡ u(f)(na,mb) = 0, (n,m) 6∈ M,283

where M = {(0, 0)}. At the origin we set u
(f)
0,0 = 1 to represent the forcing.284
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Applying these conditions to (40) gives285

δp,0δq,0 =

∞
∑

n=−∞

∞
∑

m=−∞

a(f)
n,mg((p − n)a, (q − m)b), (41)

for all p, q ∈ Z. Multiplying this through by e−ipθe−iqφ and summing over286

all p and q results in287

1 =

∞
∑

p=−∞

∞
∑

q=−∞

∞
∑

n=−∞

∞
∑

m=−∞

a(f)
n,mg((p − n)a, (q − m)b)e−ipθe−iqφ. (42)

Using the convolution result for Fourier series and rearranging, this can be288

expressed as289

1 = A(f)(θ, φ)G(θ, φ; a, b), (43)

where290

A(f)(θ, φ) =

∞
∑

n=−∞

∞
∑

m=−∞

a(f)
n,me−inθe−imφ, (44)

and291

G(θ, φ; a, b) =

∞
∑

n=−∞

∞
∑

m=−∞

g(na,mb)e−inθe−imφ, (45)

whilst the inversion formula associated with (44) is292

a(f)
n,m =

1

4π2

∫ π

−π

∫ π

−π
A(f)(θ, φ)einθeimφ dθdφ. (46)

The equation (45) defining G(θ, φ; a, b) is a double lattice sum and in the293

present form is not suitable for computation as the series is very slowly294

convergent. We follow the procedure already used for a single periodic array295

to convert (45) into a more convergent series. Thus, we use the integral296

representation (11) in (45) to give297

G(θ, φ; a, b) =
1

8π

∞
∑

m=−∞

∞
∑

n=−∞

∫ ∞

−∞
G (t,mb)ein(at−θ)−imφdt. (47)
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Using Poisson’s summation formula for the n summation gives298

G(θ, φ; a, b) =
1

4a

∞
∑

m=−∞

∞
∑

n=−∞

(

e−λ(tn)|m|b

λ(tn)
− e−γ(tn)|m|b

γ(tn)

)

e−imφ, (48)

where tn = (θ + 2nπ)/a again. Then, reversing the order of summation299

in (48) and summing the resulting geometric series for m gives, after some300

routine algebra,301

G(θ, φ; a, b) =
1

4a

∞
∑

n=−∞

(

1

λ(tn)

sinh(λ(tn)b)

cosh(λ(tn)b) − cos φ

− 1

γ(tn)

sinh(γ(tn)b)

cosh(γ(tn)b) − cos φ

)

, (49)

which is now absolutely convergent. We observe that302

G(θ + 2pπ, φ + 2qπ; a, b) = G(θ, φ; a, b) for p, q ∈ Z, (50a)

G(θ, φ; a, b) = G(θ,−φ; a, b) = G(−θ,±φ; a, b), (50b)

and also that G is real-valued. Returning to (43), and inverting the trans-303

form using (46) gives304

a(f)
n,m =

1

4π2

∫ π

−π

∫ π

−π

einθeimφ

G(θ, φ; a, b)
dθdφ (51)

In contrast to section 2, in which coefficients were defined in terms of305

a single integral with a denominator G0 which is strictly positive, in (51)306

there is the possibility that G will vanish along curves in the two-dimensional307

domain of integration.308

We therefore consider the implication of vanishing G. A reworking of309

(42) and (43) in the case of a doubly-periodic array without any defects310

results in homogeneous versions of those equations and hence non-trivial311

solutions are found when312

G(θ, φ; a, b) = 0. (52)

16



The resulting solutions have the quasi-periodicity property in that the ex-313

pansion coefficients a
(b)
m,n used in place of a

(f)
m,n in (40), satisfy the relation314

a(b)
m,n = a

(b)
0,0e

inθeimφ = a
(b)
0,0e

irn,m·α

where rn,m ≡ (na,mb) are position vectors of pins in the array, α = (α, β)315

is the Bloch wave vector and θ ≡ αa, φ ≡ βb. Such solutions represent316

Bloch-Floquet waves (hence the superscript (b)). It helps to make full use317

of this change of coordinates to define318

G̃(α; a, b) = G(θ, φ; a, b) (53)

defined on −π/a ≤ α ≤ π/a and −π/b ≤ β ≤ π/b, the fundamental cell319

of the reciprocal lattice. Solutions of (52) form propagation surfaces in320

(α, β, a)-space which depend on the lattice aspect ratio b/a. Assuming the321

aspect ratio b/a and dimensionless frequency a to be fixed, G̃ vanishes along322

the curves of constant frequency on the propagation surfaces satisfying G̃ =323

0. If G̃ 6= 0 throughout the fundamental cell of the reciprocal lattice then the324

frequency a is said to lie in a stop-band; wave propagation is impossible in all325

directions. Otherwise the frequency is said to lie in a pass band and waves326

can propagate throughout the infinite array. The permissible directions327

of wave propagation are not defined by the direction of the Bloch wave328

vector (α, β) along the curves of constant frequency, but in the direction329

of ∇G̃ ≡ (G̃α, G̃β) evaluated along those curves. This is because energy330

propagates in the direction of the group velocity vector, and not in the331

direction of the phase vector [29].332

We rewrite (51) as333

a(f)
n,m =

ab

4π2

∫ π/b

−π/b

∫ π/a

−π/a

eirn,m·α

G̃(α; a, b)
dα. (54)
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Within a stop band a
(f)
n,m may be computed directly from (54) and the so-334

lution decays to zero away from the origin. Outside the stop bands, G̃335

vanishes along curves of constant frequency and now the double integral336

in (54) contains at least one line singularity in the domain of integration.337

Imposing an appropriate radiation condition, namely that there can be no338

wave energy incoming from infinity specifies how the integrals in the inverse339

Fourier transform (51) should be defined to interpret the effect of this line340

singularity. Indeed, the far field wave behaviour is entirely determined by341

these line singularities and we evaluate their contribution by mapping the342

integral domain into a orthogonal curvilinear coordinate system which is343

aligned to each of the curves. The line singularities can then be processed344

as a continuous integral along each such line. Each integral in the vari-345

able perpendicular to the line of singularities can be deformed appropriately346

around the point where it crosses the singular line—which we assume is now347

a simple pole—according to its effect on wave radiation at infinity.348

Assume then that there are Nc such curves, labelled Cj , j = 1, . . . , Nc,349

along which G̃ = 0 in the (α, β)-plane for a given fixed frequency a. We350

parametrise each curve by its arclength s, so that α = α(s) with |α′(s)| = 1351

where the prime denotes differentiation with respect to s. Using the proce-352

dure outlined above it follows that, for large |rn,m|,353

a(f)
n,m ∼ iab

2π

Nc
∑

j=1

∫

Cj

eirn,m·α(s)

n(s) · ∇G̃
ds, (55)

where n(s) = (β′(s),−α′(s)) denotes the unit normal to the curve Cj. For354

later convenience, we also define a vector n̂(s) = µ(s)n(s), where µ(s) =355

±1, so that n̂ always points outwards from the origin. In the above, we356

evaluate the integrals with respect to the coordinate parallel to n(s) first.357

If n̂ · ∇G̃ > 0, the pole represents energy propagating away from the origin,358
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so we deform the contour and complete it in such a way that in encloses the359

singularity. However, if n̂ · ∇G̃ < 0, then energy is travelling towards the360

forced pin, and we deform and complete the integration contour without361

enclosing the pole. (In this work we have assumed that we are not at a362

saddle point of the dispersion surface, where n̂ · ∇G̃ = 0; in such a case the363

residue would be more complicated than those in equation 55.)364

The next step in determining the dominant contribution as |rn,m| → ∞365

is to identify stationary phase points in the oscillatory integral. These occur366

at Pj points on the curve Cj given by s = sjk when367

rn,m · α′(sjk) = 0, k = 1, . . . , Pj . (56)

That is, stationary points are those points on the curve G̃ = 0 where the368

radial vector to the point rn,m is perpendicular to that curve, implying369

rn,m = |rn,m|n̂(s). Applying the standard result for the method of stationary370

phase gives371

a(f)
n,m ∼ iab√

2π

Nc
∑

j=1

Pj
∑

k=1

eirn,m·α(s)ei sgn(γ(s))π/4

|γ(s)|1/2n(s) · ∇G̃

∣

∣

∣

∣

∣

s=sjk

(57)

where γ(s) = rn,m · α
′′(s) = |rn,m|κ(s), and κ(s) = µ(s)(β′(s)α′′(s) −372

α′(s)β′′(s)) is the curvature. Hence we may write (57) as373

a(f)
n,m ∼ iab

√

2π|rn,m|

Nc
∑

j=1

Pj
∑

k=1

eirn,m·α(s)ei sgn(κ(s))π/4

|κ(s)|1/2n(s) · ∇G̃

∣

∣

∣

∣

∣

s=sjk

. (58)

Note that if there are no stationary points then the summation above equates374

to zero since we are not attempting to characterise any behaviour in the far-375

field which decays more rapidly than |rn,m|−1/2. Consequently, we have not376

reconstructed the wave field at infinity, but merely provided an argument377

for directions of wave radiation and the asymptotic form for the coefficients378
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a
(f)
n,m at infinity in directions where wave radiation is permitted. Specifically,379

radiation is possible in those directions that cross a dispersion curve parallel380

to the group velocity vector at the crossing point, and where the group381

velocity vector also points away from the forced pin.382

3.2. Homogeneous defect problem383

We now consider the possibility of finding trapped modes, or localized384

wave motions, due to multiple defects in a doubly-periodic lattice of pinned385

points. A general solution is written as386

u(d)(x, y) =

∞
∑

n=−∞

∞
∑

m=−∞

a(d)
n,mg(x − na, y − mb), (59)

and we set a
(d)
n,m = 0 for (n,m) ∈ M which represents that there is no contri-387

bution to the displacement from the set M of pins that have been removed388

from the lattice. This is a homogeneous problem with no forcing, and we389

seek non-trivial coefficients a
(d)
n,m for (n,m) 6∈ M satisfying the pin condi-390

tions u(d)(pa, qb) = 0 for (p, q) 6∈ M. Letting u
(d)
p,q = u(d)(pa, qb) represent391

the unknown plate displacements for (p, q) ∈ M and writing392

u(d)(x, y) =
∑

(p,q)∈M

u(d)
p,qu

(f)(x − pa, y − qb), (60)

we can see that u(d)(pa, qb) = 0 if (p, q) 6∈ M. To satisfy the condition that393

a
(d)
n,m = 0 if (n,m) ∈ M, we note that (60) implies that394

a(d)
n,m =

∑

(p,q)∈M

u(d)
p,qa

(f)
n−p,m−q, (61)

so if (n,m) ∈ M395

0 =
∑

(p,q)∈M

u(d)
p,qa

(f)
n−p,m−q, for (n,m) ∈ M. (62)
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Thus, we have a homogeneous system for the unknown displacements u
(d)
p,q396

at the defects. In other words, the determinant of the matrix397

Kn,m,p,q = a
(f)
n−p,m−q, (n,m), (p, q) ∈ M, (63)

is required to vanish for trapping solutions to exist (since we require that398

u
(d)
p,q , (p, q) ∈ M are not all zero). The Toeplitz matrix K is sized N × N ,399

where N represents the number of defect points contained in the set M.400

Computing the kernel of K allows us to calculate the corresponding trapped401

mode(s) from (60). In practice this can be done by finding the eigenvector(s)402

of K with eigenvalue zero. If the u
(d)
p,q were all zero, then the lattice may403

as well have been pinned periodically with no defects, and we return to the404

Bloch-Floquet problem discussed earlier where trapping solutions cannot405

exist.406

To compute the shape of the trapped modes inside the defect we need407

to compute the nonzero u
(d)
p,q given in (62). This is done by first determining408

the kernel of the Toeplitz matrix K from which we can then compute the409

scattering coefficients in ( 61) allowing us to construct the displacement (59)410

after suitable truncation of both sums.411

Since G is real, if we work at frequencies a that lie in a stop band (so that412

G does not vanish in the domain integral in (51)) then we are assured that413

a
(f)
n,m is real and hence the determinant of Kn,m,p,q is also real. Thus, the task414

of finding trapping solutions is simply one of finding real frequencies that415

force a real determinant to vanish. We note that the realness and symmetry416

of Kn,m,p,q implies that the number of linearly independent trapped modes417

is equal to the multiplicity of the zero eigenvalue.418

It is instructive to consider the case where there is only a single defect419

at the origin, so that M = {(0, 0)} and then from (61) the requirement for420
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a trapped mode (51) is simply421

0 = a
(f)
0,0 =

1

4π2

∫ π

0

∫ π

0

1

G(θ, φ; a, b)
dθdφ. (64)

Clearly, for solutions of (64) to exist, we require G−1 to take different422

signs in the domain 0 < θ, φ < π. Since λ(t0) = −i(1 − θ2)1/2 where t0 ∈423

(0, 1) we see immediately that G−1(θ, φ; a, b) = 0 along the circle θ2+φ2 = 1.424

This provides a good motivation for seeking a trapped mode solution. For425

larger values of a, where |tn| < 1 for values of n other than zero, G−1
426

also vanishes along curves φ2 + (θ + 2nπ/a)2 = 1, but such arguments are427

redundant as numerical results would suggest that such values of a lie outside428

a stop band.429

3.3. Lines of defects: Fabry-Perot resonances430

Assume now that entire rows are left unpinned in the otherwise doubly-431

periodic array of pinned points. For such a configuration we seek solutions432

which are trapped by the lines of defects and rapidly decay away from the433

defect line. Such solutions are often referred to as Fabry-Perot resonances,434

or waveguide modes. The missing pins are assumed to lie along the rows435

y = mb where m ∈ M ⊂ Z. In the simplest case where a single line of436

pins are removed along y = 0, M = {0}. The general solution can be437

written as in (59) with a
(d)
n,m = 0 for n ∈ Z and m ∈ M. Clearly there is438

no periodicity in the array in the y direction, but the array is now periodic439

in the x-direction. Consequently any solution must be quasi-periodic in x;440

that is, they must satisfy441

u(d)(x + pa, y) = u(d)(x, y)eipθ, (65)

where, unlike in previous sections, θ is a freely-chosen parameter which442

reflects the quasi-periodicity of the solution whilst p ∈ Z. Consequently443
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(this can be shown by using (65) in (59)), a
(d)
n,m = a

(d)
0,meinθ and (59) becomes444

u(d)(x, y) =

∞
∑

m=−∞

a
(d)
0,m

∞
∑

n=−∞

einθg(x − na, y − mb). (66)

We then apply the pinned conditions u
(d)
0,q ≡ u(d)(0, qb) = 0 for q 6∈ M,445

which only has to be made along x = 0, since all other values of x have been446

accounted for by (65). This gives447

∞
∑

m=−∞

a
(d)
0,m

∞
∑

n=−∞

e−inθg(na, (q − m)b) =
∑

q∈M

u
(d)
0,q δq (67)

where u
(d)
0,q are the unknown plate displacements along (x, y) = (0, qb); that448

is, along the cross-section x = 0 perpendicular to the line of defects. Multi-449

plying (67) by e−iqφ and summing over all q transforms (67) into450

A(d)(φ)G(θ, φ; a, b) =
∑

q∈M

u
(d)
0,qe

−iqφ, (68)

where we now have451

A(d)(φ) =
∞
∑

m=−∞

a
(d)
0,me−imφ, (69)

and G is the double-lattice sum for the infinite periodic array defined as in452

(45). The θ-dependence is implicit in A(d) and u
(d)
0,q .453

Rearranging (68) for A(d)(φ), inverting the transform defined in (69) to454

return to a
(d)
0,m, and then applying the conditions a

(d)
0,m = 0 for m ∈ M gives455

the homogeneous system of equations456

0 =
∑

q∈M

u
(d)
0,q

∫ π

−π

ei(m−q)φ

G(θ, φ; a, b)
dφ, m ∈ M. (70)

Thus, for a Fabry-Perot resonance or trapped mode, we require the deter-457

minant of the Toeplitz matrix458

K(d)
m,q =

∫ π

0

cos((m − q)φ)

G(θ, φ; a, b)
dφ, m, q ∈ M, (71)
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to vanish. We note again that G is real, so provided it is also non-zero for459

0 < φ < π for a given value of θ, the integral (71) is real and the determinant460

of the matrix defined by (71) is also real.461

4. Results and discussion462

4.1. Forcing and scattering in one dimensional arrays463

We begin by considering the one dimensional array problem of a forced464

pin (a defect subject to time harmonic forcing of unit amplitude), which465

is shown for an array of period a = 2π in Figure 1(a). In this figure we466

can see clear left-right and up-down symmetry in the computed field, as467

well as clear energy radiation as we move away from the forcing location468

at the origin. As outlined in section 2.2, we show that it is possible to469

express the unknown coefficients for the scattering problem in terms of the470

coefficients for the forcing problem. This leads us to Figure 1(b), where the471

total field is computed for a particular scattering problem. A plane wave472

is normally-incident on the array from y > 0, so that θ0 = 0 with a = π .473

In this configuration no other diffraction orders are excited, and so we can474

determine the reflection and transmission coefficients straightforwardly as475

R = |R0|2 = 0.67801 and T = |T0|2 = 0.32199.476

Thus the symmetry of the plate displacement about the line of pins477

shown in Figure 1(b) is due to it being a particular snapshot in time of the478

superposition of a totally transmitted plane wave and a symmetric circular479

outgoing wave from the defect. Vertical channels of minimal displacement480

can be observed both above and below this single defect. We also observe a481

focusing of energy at the origin where the pin has been removed. Referring482

to Figure 3(a) of Evans and Porter [7], when θ0 = 0 the cut-off frequency483
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between the zeroth and higher grating orders is at a = ka′ = 2π where the484

reflected wave energy is precisely zero.485

For a plane wave with incident angle θ0 = π/6 Figure 2(a) shows a486

snapshot in time of a different scattered wave pattern. In this plot we can487

clearly see the formation of partial standing waves above the grating, caused488

by a large amount of reflection of wave energy by the array (as previously,489

no other diffraction orders are excited and so R = |R0|2 = 0.87550 and490

T = |T0|2 = 0.12449). However below the grating we can see the interaction491

effect between the transmitted wave energy and circular waves emanating492

from the defect, with occasional destructive interference being produced to493

the left of the defect.494

Using our formulation we can also consider the effects of multiple pins495

being removed, as shown in Figure 2(b) where for a single array of period a =496

2, four defects have been removed to recreate a double-slit experiment. For497

this problem we consider an incident wave at θ0 = π/12, which corresponds498

to a higher level of energy transmission (R = |R0|2 = 0.57652 and T =499

|T0|2 = 0.42348). Here the circular waves emanating from the defects also500

have a strong effect, with a clear channel of minimal displacement directed501

downwards and to the right from the right hand defect.502

4.2. Forcing and band surfaces for doubly periodic arrays503

We now consider the problem of determining the band surfaces of our504

pinned plate, which allows us to determine information about the propa-505

gating modes, or Bloch modes, that are supported by our doubly periodic506

medium [29]. From this, the band surfaces also reveal the locations of full or507

partial stop bands, which correspond to frequencies at which no propagation508

through the array is possible, for given (θ, φ) values. It is in these stop bands509
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that we look for trapping behaviour when defects are introduced.510

Movchan et al. [10] considered the particular case of a square array of511

pins (b/a = 1) by taking limits of a more general system based on multi-512

pole expansions designed to investigate the band-gap structure of periodic513

arrays of finite-radius circular holes. Thus, when the radius of a clamped514

hole tended to zero, a simplified dispersion relation was derived in terms515

of lattice sums for the Helmholtz and modified Helmholtz equations [see516

equation 6.2 in 10]. As outlined in their paper the computation of these517

lattice sums is extremely complicated [also see 28]. Here, we have derived518

an alternative dispersion relation (52) in which the lattice sum (49) is both519

convergent and simple to compute. Our solutions coincide with those of [10]520

who were also able to determine that the band surfaces for arrays of pins521

were bound between singularities arising from these lattice sums. These sin-522

gularity curves correspond to discrete values at which plane wave solutions523

would be supported in the medium in the absence of our pins [30]. This524

acts as a useful tool for computing solutions of (52) as an upper and lower525

bound for each zero can be determined straightforwardly.526

To determine the band surfaces from (52) we search for values of a (which527

is a dimensionless proxy for the wavenumber) for given values of θ and φ528

(which are themselves proxies for Bloch vector elements). For the case of529

a square array (b/a = 1) we show the first, second and third band surfaces530

in Figures 3(a), 3(b) and 3(c) (respectively) over a quarter of the Brillouin531

zone. A full picture of the band surface over the entire Brillouin zone can be532

obtained by reflection in the θ and φ axes. From the picture of the first band533

surface we can deduce that we have a complete stop band from 0 < a < π,534

and by comparing Figures 3(a) and 3(b), that only partial stop bands exist535

between the first and second band surfaces (i.e. the stop band frequency536
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depends on θ and φ). Movchan et al. [10] show that only partial stop bands537

exist between all other higher order band surfaces. Additionally, we note538

that the width of the first stop band is proportional to the spacing ratio539

b/a, that is, the first stop band exists in the range 0 < a < π/(b/a) for540

rectangular arrays, as outlined in section 3.1.541

In section 3.1 it was shown that wave radiation through the array from542

a forced pin can only occur when the Bloch vector α and the vector tangent543

to a constant frequency curve on the dispersion surface are at right angles,544

and provided the gradient of the dispersion surface also points away from545

the origin at any such points. Then the amplitude of the wave radiated to546

infinity is inversely proportional to both the magnitude of that gradient and547

to the square root of the curvature of the curve of constant frequency.548

Now, since b/a = 1, directions in α-space are the same as in (θ, φ)-space.549

Moreover, if wave propagation is possible in a certain direction in α-space,550

then it is also possible in the same direction in (x, y)-space. Thus, observing551

Figures 3(a) and 3(b) we can say the following. For 0 < a < π there is no552

wave radiation to infinity as the frequency lies in a stop band. Then, as a553

increases from π to approximately 3.6238 (the level of the saddle point) there554

is still no wave radiation as the only possible directions for wave propagation555

are along x = 0 and y = 0, but there the gradient of the dispersion surface556

along outgoing lines is negative. As a increases beyond 3.6238, again the557

lines x = 0 and y = 0 are excluded from wave radiation as the gradient is558

negative but wave radiation along x = y (and by reflection along x = −y)559

is allowed, determined by values of θ and φ in the portion of the dispersion560

surface for which the gradient is positive. The amplitude factor of radiated561

waves is large for a close to the value at the saddle point where the gradient562

is close to zero (this makes sense, as the group velocity is small and so563
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energy propagates slowly away from the origin) and decreases as a increases564

up to the the point at which we switch from the first band to the second565

band (a ≃ 4.4429). According to the second band, all possible directions566

of wave radiation are associated with negative gradients on the dispersion567

surface and therefore there is no wave radiation to infinity associated with568

this band. However, moving on to Figure 3(c), we can see that the third569

band also starts at a ≃ 4.4429 and in this case there are possible directions570

of wave radiation to infinity along x = 0 and y = 0 for values between571

a ≃ 6.3137 and a ≃ 7.0248 where the gradients of the dispersion surfaces572

are increasing.573

The overall picture is one in which the scope to radiate waves from an574

oscillating source at the origin to infinity is limited, even if the frequency575

is inside a band surface. However, we have shown that oscillations within576

certain higher frequency ranges can send waves through the lattice in differ-577

ent directions (here either along x = y for 3.6238 < a < 4.4429 or along the578

axes if 6.3137 < a < 7.0248).579

In Figure 4 we show a snapshot in time of the plate displacement when580

a central pin in a doubly-periodic pinned plate is made to oscillate with581

unit amplitude at a dimensionless value of a = 1 and spacing ratio of b/a =582

1/2. This corresponds to a frequency within the stop band for the doubly-583

periodic array (0 < a < 2π when b/a = 1/2) and hence the figure confirms584

that there is no energy propagation to infinity. Indeed, the displacement is585

predominantly contained horizontally within one layer of pins, and contained586

vertically within two layers.587
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4.3. Trapped modes in doubly periodic arrays with defects588

We now examine the different mode shapes that can be supported inside589

defects which exist in doubly periodic square arrays. We look for the reso-590

nant frequencies of these defects inside the first stop band, which for square591

arrays (b/a = 1) is the interval 0 < a < π. Each trapped mode correspond-592

ing to a non-degenerate frequency was also confirmed by exciting a large593

finite cluster, with the same defect in its centre, with an incident wave. At594

degenerate frequencies, different combinations of the two possible trapped595

modes appeared, depending on the angle of incidence and the relative close-596

ness of the frequencies. It would be an interesting problem to attempt to597

predict how the excited modes depend on this angle, but one which is not598

attempted here.599

We begin by determining the resonant frequencies for two problems –600

firstly, a single defect at the origin, and secondly, a 3× 3 sized defect cluster601

centred about the origin where pins corresponding to the indices (−1, 0, 1)×602

(−1, 0, 1) are removed. This is done by evaluating the determinant of the603

Toeplitz matrix Km,n,p,q as given in (63) for varying a. We can see from604

Figure 5(a) that only one resonant frequency exists in the first stop band605

for the single defect problem and is given by a ≃ 2.53727. This compares606

well with the estimate a ≃ 2.538 given in McPhedran et al. [31] which was607

evaluated by computing the kernel of a truncated matrix of standard Green’s608

functions (of the form given in (7)).609

For the 3 × 3 defect we can see from Figure 5(b) that there are res-610

onant frequencies at a ≃ 1.35692, 1.95271, 2.38206, 2.61818, 2.62461 and611

a ≃ 2.93110. In this case we have the added complication of degenerate612

(repeated) roots corresponding to the determinant curve touching the zero613

axis as opposed to crossing it completely. These degenerate frequencies are614
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a consequence of the symmetry of the geometry and the associated trapped615

mode. That is, it is possible for two modes to exist for the same frequency a,616

one with a line of symmetry in x = 0 and the other in y = 0. If a/b 6= 1 then617

modes symmetric in x are different to modes symmetric in y, eliminating618

the presence of repeated roots.619

The discontinuity of the determinant curve in Figure 5(b) at a = 2.82743620

is associated with the determinant of K becoming infinitely large. This is621

a consequence of the Green’s function being undefined at this value of a for622

all 0 < θ < π (when b/a = 1), and does not correspond to a trapped mode.623

Returning to the single defect problem, the mode shape corresponding624

to a ≃ 2.53728 is computed in Figure 6 which shows one peak, symmetric625

about both x = 0 and y = 0 which is well trapped inside the defect with626

negligible displacement throughout the surrounding array.627

For the 3×3 defect the associated modes are given in Figure 7. A number628

of these mode shapes have clear reflection and rotational symmetry inside629

the defect, most notably those corresponding to the degenerate frequencies630

which are given in Figures 7(b), 7(e), and 7(f). Some of the mode shapes631

computed here are reminiscent of the mode shapes for square plates that are632

completely clamped, as discussed in [32]. Again, we observe a rapid decay of633

displacement with distance away from the defect into the array in all figures.634

We finally consider a 4× 1 defect in a square array (b/a = 1), for which635

all trapped mode frequencies are distinct (i.e. not repeated roots) in the636

first stop band. The corresponding mode shapes are given in Figure 8 and637

bear resemblance to the first few harmonics for waves on a string, which is638

not unexpected given the slender geometry of our defect cluster.639
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4.4. Fabry-Perot line defects in two dimensional arrays640

For the waveguide problem, we remove entire rows of pins from the641

otherwise perfect doubly periodic array. We then vary our quasi-periodicity642

parameter θ and look for values of a that satisfy the relation given by (71),643

which essentially reveals the frequencies at which different waveguide modes644

are supported inside the defect(s). These waveguide modes transport wave645

energy inside the line defects with minimal (and strongly decaying) leakage646

into the surrounding array.647

In Figure 9(a) we examine (71) for the case of a single line defect (m = 0)648

for multiple aspect ratios b/a. We can see that for this single line defect649

(b/a = 1) we have a single curve which exists in the interval 1.96720 < a < π.650

We see similarly sloped curves for b/a = 1.5 and b/a = 2, which end abruptly651

when they approach the edge of their first stop bands (for the instance when652

b/a = 2, the stop band interval is 0 < a < π/2).653

In Figure 9(b) we consider the case when we have two non-neighbouring654

line defects (m = 0,−3) for multiple aspect ratios b/a. For b/a = 1, (71)655

reveals two unique values of a over an interval of θ values, which corresponds656

to one symmetric mode and one antisymmetric mode supported across both657

line defects (represented by the broken and solid lines respectively). In a658

small interval near θ ≃ 2.25 the waveguide mode frequencies a become nearly659

degenerate but ultimately two modes exist. The curves for b/a = 1.5 and660

b/a = 2 are quite different however, as we see increasing degeneracy with661

increasing θ, and no clear splitting near the approach to the first stop band662

when compared to the b/a = 1 curve.663

For the single line defect problem, the waveguide mode corresponding to664

b/a = 1, a = 2.1, θ = 0.87850 is computed using (66) and shown in Figure665

10(a). This mode is well contained with small, rapidly decaying peaks exist-666
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ing outside the defect when the mode itself is at a minimum. For the doubly667

periodic problem, the waveguide mode corresponding to b/a = 1, a = 2.1,668

θ = 0.75567 is given in Figure 10(b) and in Figure 10(c) the mode corre-669

sponding to θ = 0.97115 is shown. From Figure 10(b) we can take a vertical670

slice through the field and determine that this first mode is antisymmetric,671

and as before, we have some leakage outside the array corresponding to the672

minimum peaks of the mode, with little interaction in the space between the673

two channels. For Figure 10(c) we have the second waveguide mode which674

is symmetric and demonstrates minimal leakage outside the line defects for675

x < 0, however, there is a now strong interaction between the two channel676

defects.677

5. Conclusions678

In this paper we have examined a number of problems connected with679

defects in one- and two-dimensional rectangular arrays of periodically pinned680

plates. A method has been outlined for analytically determining a variety681

of properties of the solution including the plate displacement for problems682

where a single pin within the array is forced to oscillate and where incident683

waves are diffracted by a one-dimensional pinned array in which multiple684

pins are removed. For two-dimensional arrays, we have also provided an-685

alytical expressions to determine certain localized modes which exist when686

either a finite number of pins are removed or entire rows are removed. Con-687

nections between forced pin problems and scattering and trapping problems688

in which pins are removed have been highlighted in both one- and two-689

dimensional problems. This has similarities to the work of Thompson and690

Linton [15] for a related problem in acoustics. The exact description of the691
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infinite array has been included by Fourier transforming infinite systems of692

equations, thus avoiding the use of supercell methods as in Poulton et al.693

[22] or by interpreting results from a truncated array approximation.694

We have shown theoretically how to determine directions and amplitude695

factors of wave radiation through a doubly-periodic array in which the cen-696

tral pin is forced to oscillate and shown that different frequency ranges lead697

to wave radiation in different directions.698

There are a number of interesting extensions to the current work that699

could be made. For example, the problem of plane wave scattering by either700

one- or two-dimensional semi-infinite periodic arrays of pins could be solved701

using the discrete Wiener-Hopf technique as done by [33] and [34] for scat-702

tering of long waves by cylinders. Defects (particularly line defects) could703

also be put introduced into their formulations in a relatively straightforward704

manner.705

Another straightforward extension of the methods presented here can be706

made for problems involving defects in a semi-infinite elastic plate which is707

pinned periodically along its free edge. The solution for the corresponding708

problem without defects has been presented in [35] which simply requires709

that the Green’s function, representing the effect of each pin be altered, to710

take account of the free edge conditions [see 36].711

In the final stages of preparation of this paper, the authors became aware712

of related work published by [37], which independently reproduces some of713

the results here. Specifically they consider the problems of single point714

and line defects (as opposed to the interaction theory developed herein to715

accommodate multiple defects). They also considered forcing and defects in716

doubly periodic arrays of point masses, as well as rigid pins.717
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(a)

(b)

Figure 1: (a): Total field (Re{u(f)}) for a single array of period a = 2π with a single defect

at M = {0} when the central pin is forced. (b): Total field (Re{u(s)}) demonstrating

scattering by a plane wave at normal incidence on an array with a = π, M = {0}.

9
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(a)

(b)

Figure 2: (a): Total field (Re{u(s)}) demonstrating scattering by a plane wave at angle

θi = π/6 on a grating of period a = π. (b): Total field (Re{u(s)}) demonstrating scattering

by a plane wave at angle θi = π/12 incident on a single array of period a = 2 with a four

defects at index locations M = {−4,−3, 3, 4}.
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Figure 3: (a): Contour plot of a values constituting the first band surface, over 1/4 of the

Brillouin zone, for a doubly periodic square array of pinned points b/a = 1. Figures (b)

and (c) show the second and third band surfaces (respectively) over 1/4 of the Brillouin

zone.

41



Figure 4: Total field (Re{u(f)}) for the forcing of the central pin M = {0, 0} in a doubly

periodic array with periodicity a = 1, b = 1/2.
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Figure 5: (b): Determinant of Toeplitz matrix Km,n,p,q for a single defect at the origin,

with a single defect frequency at a ≃ 2.53728 for b/a = 1. (b): Determinant of Toeplitz

matrix Km,n,p,q for a 3 × 3 defect, with multiple defect frequencies.
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Figure 6: Mode shape (Re{u(d)}) for a single defect in doubly periodic domain a ≃ 2.53728,

b/a = 1.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Mode shapes that are supported inside 3 × 3 defect in doubly periodic domain

(b/a = 1) at (a): a ≃ 1.35692, (b): a ≃ 1.95271, (c): a ≃ 2.38206, (d): a ≃ 2.61818, (e):

a ≃ 2.62461 and (f): a ≃ 2.93110.
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(a) (b)

(c) (d)

Figure 8: Mode shapes that are supported inside 4 × 1 defect (or 1 × 4 defect) in doubly

periodic domain (b/a = 1) at (a): a ≃ 2.04864, (b): a ≃ 2.28328, (c): a ≃ 2.63330, and

(d): a ≃ 3.03234.
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Figure 9: (a): Plot showing the values of a for which det{Km,q} = 0 for a single line defect

(m = 0). (b): Values of a when det{Km,q} = 0 for the two line defect case (m = 0,−3)

where b/a = 1 (blue curve), b/a = 1.5 (black curve), b/a = 2 (red curve).
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Figure 10: (a): Waveguide mode (Re{u(d)}) for a single line defect at θ = 0.87850 for

a = 2.1, b/a = 1. (b-c): Waveguide modes for a double line defect corresponding to (b)

θ = 0.75567 and (c) θ = 0.97115 with a = 2.1 and b/a = 1.
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