5,780 research outputs found

    How Confident Can We Be in Modelling Female Swimming Performance in Adolescence?

    Get PDF
    The purpose of this research was to determine the expected progression of adolescent female swimming performances using a longitudinal approach. The performances of 514 female swimmers (12–19 year olds) who participated in one or more FINA-regulated annual international schools’ swimming championships over an eight-year period were analysed. Quadratic functions for each of the seven individual events (50, 100, 200 m freestyle, 100 m backstroke, breaststroke, butterfly, 200 m individual medley) were determined using mixed linear models. The predicted threshold of peak performance ranged from 16.8 ± 0.2 (200 m individual medley) to 20.6 ± 0.1 (100 m butterfly) years of age, preceded by gradual rates of improvement (mean rate of 1.6% per year). However, following cross validation, only three events (100 m backstroke, 200 m individual medley and 200 m freestyle) produced reliable models. Identifying the factors that contribute to the progression of female performance in this transitory period of life remains challenging, not least since the onset of puberty is likely to have occurred prior to reaching 12 years of age, the minimum competition age for this championship

    Chronicles of Oklahoma

    Get PDF
    Article details Nathaniel Gist's interactions with the Cherokee tribe as he traveled with General George Washington throughout Indian Territory. Nathaniel Gist was the father of Sequoyah, the creator of the Cherokee alphabet

    Impact of hydration status on electromyography and ratings of perceived exertion during the vertical jump

    Get PDF
    Copyright (c) the author(s). This is an open access article under CC BY license (https://creativecommons.org/licenses/by/4.0/) Background: The vertical jumping task is commonly used to assess lower-body power output in athletic populations, in addition to being commonly used to during investigations of hydration and anaerobic performance. Changes in neuromuscular function during a hypohydrated state have been proposed as a potential mechanism to decreases in anaerobic performance. Objectives: The primary purpose of this investigation was to examine the impact of hydration state on electromyography during the vertical jumping task. Methods: Twenty recreationally trained males were tested in three hydration conditions (hypohydrated, euhydrated, and control). Testing included maximal voluntary contractions of the vastus lateralis, vastus medialis, semitendinosus and medial gastrocnemius. Participants performed three maximal countermovement and squat jumps respectively for a total of six jumps in each condition. Both mean muscle activity and percentage of maximal voluntary contraction were calculated across the propulsive phase of each jump. Additionally, measures of RPE and the use of a mood rating scale were used as subjective measures. Results: No differences were seen in mean muscle activity and percentage of MVC in either of the jumping conditions (p \u3e 0.05). Significant differences were seen with higher ratings of perceived exertion as well as lower levels of mood ratings after the hypohydrated condition (p = 0.02 and p = 0.048 respectively). Conclusions: Decrements seen in vertical jump performance during a hypohydrated state appear to be caused from changes other than neuromuscular function and muscle activity. Differences in subjective measures may provide insight into changes in motivational levels and potentially impacting performance

    Impact of Hydration Status On Electromyography and Ratings of Perceived Exertion During the Vertical Jump

    Get PDF
    Background: The vertical jumping task is commonly used to assess lower-body power output in athletic populations, in addition to being commonly used to during investigations of hydration and anaerobic performance. Changes in neuromuscular function during a hypohydrated state have been proposed as a potential mechanism to decreases in anaerobic performance. Objectives: The primary purpose of this investigation was to examine the impact of hydration state on electromyography during the vertical jumping task. Methods: Twenty recreationally trained males were tested in three hydration conditions (hypohydrated, euhydrated, and control). Testing included maximal voluntary contractions of the vastus lateralis, vastus medialis, semitendinosus and medial gastrocnemius. Participants performed three maximal countermovement and squat jumps respectively for a total of six jumps in each condition. Both mean muscle activity and percentage of maximal voluntary contraction were calculated across the propulsive phase of each jump. Additionally, measures of RPE and the use of a mood rating scale were used as subjective measures. Results: No differences were seen in mean muscle activity and percentage of MVC in either of the jumping conditions (p \u3e 0.05). Significant differences were seen with higher ratings of perceived exertion as well as lower levels of mood ratings after the hypohydrated condition (p = 0.02 and p = 0.048 respectively). Conclusions: Decrements seen in vertical jump performance during a hypohydrated state appear to be caused from changes other than neuromuscular function and muscle activity. Differences in subjective measures may provide insight into changes in motivational levels and potentially impacting performance

    Determination of T Follicular Helper Cell Fate by Dendritic Cells.

    Get PDF
    T follicular helper (Tfh) cells are a specialized subset of CD4+ T cells that collaborate with B cells to promote and regulate humoral responses. Unlike other CD4+ effector lineages, Tfh cells require interactions with both dendritic cells (DCs) and B cells to complete their differentiation. While numerous studies have assessed the potential of different DC subsets to support Tfh priming, the conclusions of these studies depend heavily on the model and method of immunization used. We propose that the location of different DC subsets within the lymph node (LN) and their access to antigen determine their potency in Tfh priming. Finally, we provide a three-step model that accounts for the ability of multiple DC subsets and related lineages to support the Tfh differentiation program

    ALMA Observations of Asymmetric Molecular Gas Emission from a Protoplanetary Disk in the Orion Nebula

    Full text link
    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of molecular line emission from d216-0939, one of the largest and most massive protoplanetary disks in the Orion Nebula Cluster (ONC). We model the spectrally resolved HCO+^+ (4--3), CO (3--2), and HCN (4--3) lines observed at 0\farcs5 resolution to fit the temperature and density structure of the disk. We also weakly detect and spectrally resolve the CS (7--6) line but do not model it. The abundances we derive for CO and HCO+^+ are generally consistent with expected values from chemical modeling of protoplanetary disks, while the HCN abundance is higher than expected. We dynamically measure the mass of the central star to be 2.17±0.07 M⊙2.17\pm0.07\,M_\odot which is inconsistent with the previously determined spectral type of K5. We also report the detection of a spatially unresolved high-velocity blue-shifted excess emission feature with a measurable positional offset from the central star, consistent with a Keplerian orbit at 60±20 au60\pm20\,\mathrm{au}. Using the integrated flux of the feature in HCO+^+ (4--3), we estimate the total H2_2 gas mass of this feature to be at least 1.8−8 MJupiter1.8-8\,M_\mathrm{Jupiter}, depending on the assumed temperature. The feature is due to a local temperature and/or density enhancement consistent with either a hydrodynamic vortex or the expected signature of the envelope of a forming protoplanet within the disk.Comment: 19 pages, 12 figures, accepted for publication in A

    Regge calculus and Ashtekar variables

    Full text link
    Spacetime discretized in simplexes, as proposed in the pioneer work of Regge, is described in terms of selfdual variables. In particular, we elucidate the "kinematic" structure of the initial value problem, in which 3--space is divided into flat tetrahedra, paying particular attention to the role played by the reality condition for the Ashtekar variables. An attempt is made to write down the vector and scalar constraints of the theory in a simple and potentially useful way.Comment: 10 pages, uses harvmac. DFUPG 83/9

    An efficient basis set representation for calculating electrons in molecules

    Full text link
    The method of McCurdy, Baertschy, and Rescigno, J. Phys. B, 37, R137 (2004) is generalized to obtain a straightforward, surprisingly accurate, and scalable numerical representation for calculating the electronic wave functions of molecules. It uses a basis set of product sinc functions arrayed on a Cartesian grid, and yields 1 kcal/mol precision for valence transition energies with a grid resolution of approximately 0.1 bohr. The Coulomb matrix elements are replaced with matrix elements obtained from the kinetic energy operator. A resolution-of-the-identity approximation renders the primitive one- and two-electron matrix elements diagonal; in other words, the Coulomb operator is local with respect to the grid indices. The calculation of contracted two-electron matrix elements among orbitals requires only O(N log(N)) multiplication operations, not O(N^4), where N is the number of basis functions; N = n^3 on cubic grids. The representation not only is numerically expedient, but also produces energies and properties superior to those calculated variationally. Absolute energies, absorption cross sections, transition energies, and ionization potentials are reported for one- (He^+, H_2^+ ), two- (H_2, He), ten- (CH_4) and 56-electron (C_8H_8) systems.Comment: Submitted to JC
    • …
    corecore