2,369 research outputs found

    Detecting a Currency's Dominance or Dependence using Foreign Exchange Network Trees

    Full text link
    In a system containing a large number of interacting stochastic processes, there will typically be many non-zero correlation coefficients. This makes it difficult to either visualize the system's inter-dependencies, or identify its dominant elements. Such a situation arises in Foreign Exchange (FX) which is the world's biggest market. Here we develop a network analysis of these correlations using Minimum Spanning Trees (MSTs). We show that not only do the MSTs provide a meaningful representation of the global FX dynamics, but they also enable one to determine momentarily dominant and dependent currencies. We find that information about a country's geographical ties emerges from the raw exchange-rate data. Most importantly from a trading perspective, we discuss how to infer which currencies are `in play' during a particular period of time

    Estimating exclusion: a tool to help designers

    Get PDF
    An exclusion audit assesses how inclusive a product or service is. This is useful for comparing designs and identifying points for improvement. In an exclusion audit, the designer or usability expert identifies the demands a product places on the user‟s capabilities and enters these into an exclusion calculator. This software then estimates the proportion of the adult British population who would be excluded from using the product because their capabilities do not meet these demands. This paper describes research on improving the exclusion calculator based on a recent reanalysis of the calculator‟s underlying dataset. This enabled the capabilities to be broken down into more specific sub-categories or “demand types”. An experiment investigated the use of these demand types in the context of an exclusion audit. It found that participants could determine the demand type of an action consistently, in the majority of cases. This approach was adopted in a redesign of the calculator, described in this paper

    Impact of Unexpected Events, Shocking News and Rumours on Foreign Exchange Market Dynamics

    Get PDF
    We analyze the dynamical response of the world's financial community to various types of unexpected events, including the 9/11 terrorist attacks as they unfolded on a minute-by-minute basis. We find that there are various 'species' of news, characterized by how quickly the news get absorbed, how much meaning and importance is assigned to it by the community, and what subsequent actions are then taken. For example, the response to the unfolding events of 9/11 shows a gradual collective understanding of what was happening, rather than an immediate realization. For news items which are not simple economic statements, and hence whose implications are not immediately obvious, we uncover periods of collective discovery during which collective opinions seem to oscillate in a remarkably synchronized way. In the case of a rumour, our findings also provide a concrete example of contagion in inter-connected communities. Practical applications of this work include the possibility of producing selective newsfeeds for specific communities, based on their likely impact

    Conflict of interest and signal interference lead to the breakdown of honest signalling

    Get PDF
    Animals use signals to coordinate a wide range of behaviours, from feeding offspring to predator avoidance. This poses an evolutionary problem, because individuals could potentially signal dishonestly to coerce others into behaving in ways that benefit the signaller. Theory suggests that honest signalling is favoured when individuals share a common interest and signals carry reliable information. Here, we exploit the opportunities offered by bacterial signalling, to test these predictions with an experimental evolution approach. We show that: (1) a reduced relatedness leads to the relative breakdown of signalling; (2) signalling breaks down by the invasion of mutants that show both reduced signalling and reduced response to signal; (3) the genetic route to signalling breakdown is variable; (4) the addition of artificial signal, to interfere with signal information, also leads to reduced signalling. Our results provide clear support for signalling theory, but we did not find evidence for the previously predicted coercion at intermediate relatedness, suggesting that mechanistic details can alter the qualitative nature of specific predictions. Furthermore, populations evolved under low relatedness caused less mortality to insect hosts, showing how signal evolution in bacterial pathogens can drive the evolution of virulence in the opposite direction to that often predicted by theory

    Abatacept Pharmacokinetics and Exposure Response in Patients Hospitalized With COVID-19: A Secondary Analysis of the ACTIV-1 IM Randomized Clinical Trial

    Get PDF
    IMPORTANCE: The pharmacokinetics of abatacept and the association between abatacept exposure and outcomes in patients with severe COVID-19 are unknown. OBJECTIVE: To characterize abatacept pharmacokinetics, relate drug exposure with clinical outcomes, and evaluate the need for dosage adjustments. DESIGN, SETTING, AND PARTICIPANTS: This study is a secondary analysis of data from the ACTIV-1 (Accelerating COVID-19 Therapeutic Interventions and Vaccines) Immune Modulator (IM) randomized clinical trial conducted between October 16, 2020, and December 31, 2021. The trial included hospitalized adults who received abatacept in addition to standard of care for treatment of COVID-19 pneumonia. Data analysis was performed between September 2022 and February 2024. EXPOSURE: Single intravenous infusion of abatacept (10 mg/kg with a maximum dose of 1000 mg). MAIN OUTCOMES AND MEASURES: Mortality at day 28 was the primary outcome of interest, and time to recovery at day 28 was the secondary outcome. Drug exposure was assessed using the projected area under the serum concentration time curve over 28 days (AUC0-28). Logistic regression modeling was used to analyze the association between drug exposure and 28-day mortality, adjusted for age, sex, and disease severity. The association between time to recovery and abatacept exposure was examined using Fine-Gray modeling with death as a competing risk, and was adjusted for age, sex, and disease severity. RESULTS: Of the 509 patients who received abatacept, 395 patients with 848 serum samples were included in the population pharmacokinetic analysis. Their median age was 55 (range, 19-89) years and most (250 [63.3%]) were men. Abatacept clearance increased with body weight and more severe disease activity at baseline. Drug exposure was higher in patients who survived vs those who died, with a median AUC0-28 of 21 428 (range, 8462-43 378) mg × h/L vs 18 262 (range, 9628-27 507) mg × h/L (P \u3c .001). Controlling for age, sex, and disease severity, an increase of 5000 units in AUC0-28 was associated with lower odds of mortality at day 28 (OR, 0.52 [95% CI, 0.35-0.79]; P = .002). For an AUC0-28 of 19 400 mg × h/L or less, there was a higher probability of recovery at day 28 (hazard ratio, 2.63 [95% CI, 1.70-4.08] for every 5000-unit increase; P \u3c .001). Controlling for age, sex, and disease severity, every 5000-unit increase in AUC0-28 was also associated with lower odds of a composite safety event at 28 days (OR, 0.46 [95% CI, 0.33-0.63]; P \u3c .001). Using the dosing regimen studied in the ACTIV-1 IM trial, 121 of the 395 patients (30.6%) would not achieve an abatacept exposure of at least 19 400 mg × h/L, particularly at the extremes of body weight. Using a modified, higher-dose regimen, only 12 patients (3.0%) would not achieve the hypothesized target abatacept exposure. CONCLUSIONS AND RELEVANCE: In this study, patients who were hospitalized with severe COVID-19 and achieved higher projected abatacept exposure had reduced mortality and a higher probability of recovery with fewer safety events. However, abatacept clearance was high in this population, and the current abatacept dosing (10 mg/kg intravenously with a maximum of 1000 mg) may not achieve optimal exposure in all patients. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04593940

    Conflict of interest and signal interference lead to the breakdown of honest signalling

    Get PDF
    Animals use signals to coordinate a wide range of behaviours, from feeding offspring to predator avoidance. This poses an evolutionary problem, because individuals could potentially signal dishonestly to coerce others into behaving in ways that benefit the signaller. Theory suggests that honest signalling is favoured when individuals share a common interest and signals carry reliable information. Here, we exploit the opportunities offered by bacterial signalling, to test these predictions with an experimental evolution approach. We show that: (1) a reduced relatedness leads to the relative breakdown of signalling; (2) signalling breaks down by the invasion of mutants that show both reduced signalling and reduced response to signal; (3) the genetic route to signalling breakdown is variable; (4) the addition of artificial signal, to interfere with signal information, also leads to reduced signalling. Our results provide clear support for signalling theory, but we did not find evidence for the previously predicted coercion at intermediate relatedness, suggesting that mechanistic details can alter the qualitative nature of specific predictions. Furthermore, populations evolved under low relatedness caused less mortality to insect hosts, showing how signal evolution in bacterial pathogens can drive the evolution of virulence in the opposite direction to that often predicted by theory
    corecore