91 research outputs found

    Alcohol policy enforcement and changes in student drinking rates in a statewide public college system: a follow-up study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heavy alcohol use among U.S. college students is a major contributor to young adult morbidity and mortality. The aim of this study was to examine whether college alcohol policy enforcement levels predict changes in student drinking and related behaviors in a state system of public colleges and universities, following a system-wide change to a stricter policy.</p> <p>Methods</p> <p>Students and administrators at 11 Massachusetts public colleges/universities completed surveys in 1999 (N of students = 1252), one year after the policy change, and again in 2001 (N = 1074). We calculated policy enforcement scores for each school based on the reports of deans of students, campus security chiefs, and students, and examined the correlations between perceived enforcement levels and the change in student drinking rates over the subsequent two year period, after weighting the 2001 data to adjust for demographic changes in the student body.</p> <p>Results</p> <p>Overall rates of any past-30-days drinking, heavy episodic drinking, and usual heavy drinking among past-30-days drinkers were all lower in 2001 compared to 1999. School-level analyses (N = 11) found deans' baseline reports of stricter enforcement were strongly correlated with subsequent declines in heavy episodic drinking (Pearson's r = -0.73, p = 0.011). Moreover, consistently high enforcement levels across time, as reported by deans, were associated with greater declines in heavy episodic drinking. Such relationships were not found for students' and security chiefs' reports of enforcement. Marijuana use did not rise during this period of decline in heavy drinking.</p> <p>Conclusions</p> <p>Study findings suggest that stronger enforcement of a stricter alcohol policy may be associated with reductions in student heavy drinking rates over time. An aggressive enforcement stance by deans may be an important element of an effective college alcohol policy.</p

    Variation in carbon and nitrogen concentrations among peatland categories at the global scale

    Get PDF
    Publisher Copyright: © 2022 This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.Peatlands account for 15 to 30% of the world's soil carbon (C) stock and are important controls over global nitrogen (N) cycles. However, C and N concentrations are known to vary among peatlands contributing to the uncertainty of global C inventories, but there are few global studies that relate peatland classification to peat chemistry. We analyzed 436 peat cores sampled in 24 countries across six continents and measured C, N, and organic matter (OM) content at three depths down to 70 cm. Sites were distinguished between northern (387) and tropical (49) peatlands and assigned to one of six distinct broadly recognized peatland categories that vary primarily along a pH gradient. Peat C and N concentrations, OM content, and C:N ratios differed significantly among peatland categories, but few differences in chemistry with depth were found within each category. Across all peatlands C and N concentrations in the 10-20 cm layer, were 440 ± 85.1 g kg-1 and 13.9 ± 7.4 g kg-1, with an average C:N ratio of 30.1 ± 20.8. Among peatland categories, median C concentrations were highest in bogs, poor fens and tropical swamps (446-532 g kg-1) and lowest in intermediate and extremely rich fens (375-414 g kg-1). The C:OM ratio in peat was similar across most peatland categories, except in deeper samples from ombrotrophic tropical peat swamps that were higher than other peatlands categories. Peat N concentrations and C:N ratios varied approximately two-fold among peatland categories and N concentrations tended to be higher (and C:N lower) in intermediate fens compared with other peatland types. This study reports on a unique data set and demonstrates that differences in peat C and OM concentrations among broadly classified peatland categories are predictable, which can aid future studies that use land cover assessments to refine global peatland C and N stocks.Peer reviewe

    The Human Phenotype Ontology in 2024: phenotypes around the world.

    Get PDF
    The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs

    Municipal Corporations, Homeowners, and the Benefit View of the Property Tax

    Full text link
    corecore