689 research outputs found
Quantum correlated twin atomic beams via photo-dissociation of a molecular Bose-Einstein condensate
We study the process of photo-dissociation of a molecular Bose-Einstein
condensate as a potential source of strongly correlated twin atomic beams. We
show that the two beams can possess nearly perfect quantum squeezing in their
relative numbers.Comment: Corrected LaTeX file layou
Stationary quantum statistics of a non-Markovian atom laser
We present a steady state analysis of a quantum-mechanical model of an atom
laser. A single-mode atomic trap coupled to a continuum of external modes is
driven by a saturable pumping mechanism. In the dilute flux regime, where
atom-atom interactions are negligible in the output, we have been able to solve
this model without making the Born-Markov approximation. The more exact
treatment has a different effective damping rate and occupation of the lasing
mode, as well as a shifted frequency and linewidth of the output. We examine
gravitational damping numerically, finding linewidths and frequency shifts for
a range of pumping rates. We treat mean field damping analytically, finding a
memory function for the Thomas-Fermi regime. The occupation and linewidth are
found to have a nonlinear scaling behavior which has implications for the
stability of atom lasers.Comment: 12 pages, 2 figures, submitted to PR
Protocol for Monitoring Aquatic Invertebrates of Small Streams in the Heartland Inventory & Monitoring Network, Version 2.1
Executive Summary
The Heartland Inventory and Monitoring Network (HTLN) is a component of the National Park Serviceâs (NPS) strategy to improve park management through greater reliance on scientific information. The purposes of this program are to design and implement long-term ecological monitoring and provide information for park managers to evaluate the integrity of park ecosystems and better understand ecosystem processes. Concerns over declining surface water quality have led to the development of various monitoring approaches to assess stream water quality. Freshwater streams in network parks are threatened by numerous stressors, most of which originate outside park boundaries. Stream condition and ecosystem health are dependent on processes occurring in the entire watershed as well as riparian and floodplain areas; therefore, they cannot be manipulated independently of this interrelationship. Land use activitiesâsuch as timber management, landfills, grazing, confined animal feeding operations, urbanization, stream channelization, removal of riparian vegetation and gravel, and mineral and metals miningâthreaten stream quality. Accordingly, the framework for this aquatic monitoring is directed towards maintaining the ecological integrity of the streams in those parks.
Invertebrates are an important tool for understanding and detecting changes in ecosystem integrity, and they can be used to reflect cumulative impacts that cannot otherwise be detected through traditional water quality monitoring. The broad diversity of invertebrate species occurring in aquatic systems similarly demonstrates a broad range of responses to different environmental stressors. Benthic invertebrates are sensitive to the wide variety of impacts that influence Ozark streams. Benthic invertebrate community structure can be quantified to reflect stream integrity in several ways, including the absence of pollution sensitive taxa, dominance by a particular taxon combined with low overall taxa richness, or appreciable shifts in community composition relative to reference condition. Furthermore, changes in the diversity and community structure of benthic invertebrates are relatively simple to communicate to resource managers and the public. To assess the natural and anthropogenic processes influencing invertebrate communities, this protocol has been designed to incorporate the spatial relationship of benthic invertebrates with their local habitat including substrate size and embeddedness, and water quality parameters (temperature, dissolved oxygen, pH, specific conductance, and turbidity). Rigid quality control and quality assurance are used to ensure maximum data integrity. Detailed standard operating procedures (SOPs) and supporting information are associated with this protocol
Going into the groin: Injection into the femoral vein among people who inject drugs in three urban areas of England
Background: There have been increasing concerns about injection into the femoral vein â groin injecting â among people who inject drugs in a number of countries, though most studies have been small. The extent, reasons and harms associated with groin injecting are examined.
Method: Participants were recruited using respondent driven sampling (2006â2009). Weighted data was examined using bivariate analyses and logistic regression.
Results: The mean age was 32 years; 25% were women (N = 855). During the preceding 28 days, 94% had injected heroin and 13% shared needles/syringes. Overall, 53% reported ever groin injecting, with 9.8% first doing so at the same age as starting to inject. Common reasons given for groin injecting included: âCanât get a vein elsewhereâ (68%); âIt is discreetâ (18%); and âIt is quickerâ (14%). During the preceding 28 days, 41% had groin injected, for 77% this was the only body area used (for these âIt is discreetâ was more frequently given as a reason). In the multivariable analysis, groin injection was associated with: swabbing injection sites; saving filters for reuse; and receiving opiate substitution therapy. It was less common among those injecting into two body areas, and when other people (rather than services) were the main source of needles. Groin injection was more common among those with hepatitis C and reporting ever having deep vein thrombosis or septicaemia.
Conclusions: Groin injection was common, often due to poor vascular access, but for some it was out of choice. Interventions are required to reduce injecting risk and this practice
Quantum effects on the dynamics of a two-mode atom-molecule Bose-Einstein condensate
We study the system of coupled atomic and molecular condensates within the
two-mode model and beyond mean-field theory (MFT). Large amplitude
atom-molecule coherent oscillations are shown to be damped by the rapid growth
of fluctuations near the dynamically unstable molecular mode. This result
contradicts earlier predictions about the recovery of atom-molecule
oscillations in the two-mode limit. The frequency of the damped oscillation is
also shown to scale as with the total number of atoms ,
rather than the expected pure scaling. Using a linearized model, we
obtain analytical expressions for the initial depletion of the molecular
condensate in the vicinity of the instability, and show that the important
effect neglected by mean field theory is an initially non-exponential
`spontaneous' dissociation into the atomic vacuum. Starting with a small
population in the atomic mode, the initial dissociation rate is sensitive to
the exact atomic amplitudes, with the fastest (super-exponential) rate observed
for the entangled state, formed by spontaneous dissociation.Comment: LaTeX, 5 pages, 3 PostScript figures, uses REVTeX and epsfig,
submitted to Physical Review A, Rapid Communication
Model study on the photoassociation of a pair of trapped atoms into an ultralong-range molecule
Using the method of quantum-defect theory, we calculate the ultralong-range
molecular vibrational states near the dissociation threshold of a diatomic
molecular potential which asymptotically varies as . The properties of
these states are of considerable interest as they can be formed by
photoassociation (PA) of two ground state atoms. The Franck-Condon overlap
integrals between the harmonically trapped atom-pair states and the
ultralong-range molecular vibrational states are estimated and compared with
their values for a pair of untrapped free atoms in the low-energy scattering
state. We find that the binding between a pair of ground-state atoms by a
harmonic trap has significant effect on the Franck-Condon integrals and thus
can be used to influence PA. Trap-induced binding between two ground-state
atoms may facilitate coherent PA dynamics between the two atoms and the
photoassociated diatomic molecule.Comment: 11 pages, 4 figures, to appear in Phys. Rev. A (September, 2003
Protocol for Monitoring Fish Communities in Small Streams in the Heartland Inventory and Monitoring Network, Version 2.0
Executive Summary
Fish communities are an important component of aquatic systems and are good bioindicators of ecosystem health. Land use changes in the Midwest have caused sedimentation, erosion, and nutrient loading that degrades and fragments habitat and impairs water quality. Because most small wadeable streams in the Heartland Inventory and Monitoring Network (HTLN) have a relatively small area of their watersheds located within park boundaries, these streams are at risk of degradation due to adjacent land use practices and other anthropogenic disturbances. Shifts in the physical and chemical properties of aquatic systems have a dramatic effect on the biotic community. The federally endangered Topeka shiner (Notropis topeka) and other native fishes have declined in population size due to habitat degradation and fragmentation in Midwest streams. By protecting portions of streams on publicly owned lands, national parks may offer refuges for threatened or endangered species and species of conservation concern, as well as other native species.
This protocol describes the background, history, justification, methodology, data analysis and data management for long-term fish community monitoring of wadeable streams within nine HTLN parks: Effigy Mounds National Monument (EFMO), George Washington Carver National Monument (GWCA), Herbert Hoover National Historic Site (HEHO), Homestead National Monument of America (HOME), Hot Springs National Park (HOSP), Pea Ridge National Military Park (PERI), Pipestone National Monument (PIPE), Tallgrass Prairie National Preserve (TAPR), and Wilson\u27s Creek National Battlefield (WICR). The objectives of this protocol are to determine the status and long-term trends in fish richness, diversity, abundance, and community composition in small wadeable streams within these nine parks and correlate the long-term community data to overall water quality and habitat condition (DeBacker et al. 2005)
Bayesian paternity analysis and mating patterns in a parasitic nematode, Trichostrongylus tenuis
Mating behaviour is a fundamental aspect of the evolutionary ecology of sexually reproducing species, but one that has been under-researched in parasitic nematodes. We analysed mating behaviour in the parasitic nematode Trichostrongylus tenuis by performing a paternity analysis in a population from a single red grouse host. Paternity of the 150 larval offspring of 25 mothers (sampled from one of the two host caeca) was assigned among 294 candidate fathers (sampled from both caeca). Each candidate father's probability of paternity of each offspring was estimated from 10-locus microsatellite genotypes. Seventy-six (51%) offspring were assigned a father with a probability of >0.8, and the estimated number of unsampled males was 136 (95% credible interval (CI) 77-219). The probability of a male from one caecum fathering an offspring in the other caecum was estimated as 0.024 (95% CI 0.003-0.077), indicating that the junction of the caeca is a strong barrier to dispersal. Levels of promiscuity (defined as the probability of two of an adult's offspring sharing only one parent) were high for both sexes. Variance in male reproductive success was moderately high, possibly because of a combination of random mating and high variance in post-copulatory reproductive success. These results provide the first data on individual mating behaviour among parasitic nematodes
The microaerophilic microbiota of de-novo paediatric inflammatory bowel disease: the BISCUIT study
<p>Introduction: Children presenting for the first time with inflammatory bowel disease (IBD) offer a unique opportunity to study aetiological agents before the confounders of treatment. Microaerophilic bacteria can exploit the ecological niche of the intestinal epithelium; Helicobacter and Campylobacter are previously implicated in IBD pathogenesis. We set out to study these and other microaerophilic bacteria in de-novo paediatric IBD.</p>
<p>Patients and Methods: 100 children undergoing colonoscopy were recruited including 44 treatment naĂŻve de-novo IBD patients and 42 with normal colons. Colonic biopsies were subjected to microaerophilic culture with Gram-negative isolates then identified by sequencing. Biopsies were also PCR screened for the specific microaerophilic bacterial groups: Helicobacteraceae, Campylobacteraceae and Sutterella wadsworthensis.</p>
<p>Results: 129 Gram-negative microaerophilic bacterial isolates were identified from 10 genera. The most frequently cultured was S. wadsworthensis (32 distinct isolates). Unusual Campylobacter were isolated from 8 subjects (including 3 C. concisus, 1 C. curvus, 1 C. lari, 1 C. rectus, 3 C. showae). No Helicobacter were cultured. When comparing IBD vs. normal colon control by PCR the prevalence figures were not significantly different (Helicobacter 11% vs. 12%, p = 1.00; Campylobacter 75% vs. 76%, p = 1.00; S. wadsworthensis 82% vs. 71%, p = 0.312).</p>
<p>Conclusions: This study offers a comprehensive overview of the microaerophilic microbiota of the paediatric colon including at IBD onset. Campylobacter appear to be surprisingly common, are not more strongly associated with IBD and can be isolated from around 8% of paediatric colonic biopsies. S. wadsworthensis appears to be a common commensal. Helicobacter species are relatively rare in the paediatric colon.</p>
- âŠ